Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Portable sampling cart monitors emissions from wood-burning cookstoves

16.12.2004


A new method of measuring emissions from cookstoves could help improve human health and enhance the accuracy of global climate models.



Wood-fueled cooking stoves are commonly used in Central America and other Third World nations. Producing copious amounts of noxious smoke, the stoves can be detrimental to human health. Lack of knowledge about the characteristics and quantities of emissions from millions of these modified campfires is a major contributor to uncertainties in global emission inventories of particulate matter.

To improve the measurement and characterization of emissions from wood-fueled cookstoves, researchers at the University of Illinois at Urbana-Champaign have designed and built a portable, battery-operated sampling cart. The inexpensive and mobile monitoring system can be taken to remote locations to better evaluate emission sources.


"We have established working relationships with non-profit organizations in the United States and in developing countries that afford us access to ongoing measurements of both traditional and improved wood-burning cookstoves," said Tami Bond, a professor of civil and environmental engineering. "These partnerships form the foundation for achieving a positive impact on both human health and the environment."

In the past, field measurements were difficult to obtain for many reasons, including limited access to remote sites and the lack of power to operate equipment. While cooking fires have been replicated and measured in laboratory settings, the results may not represent actual cooking practices.

"To be accurate, we really need to measure while food is being cooked," said graduate student Christoph Roden. "We need to record how much fuel is consumed, and we need to examine the type, size and condition of the wood that is burned."

The sampling cart carries sensors for measuring carbon dioxide and carbon monoxide, a particle soot absorption photometer for measuring particle color, a nephelometer for measuring particle concentration, and two filters for collecting particles for later analysis. A battery-operated power supply and data-acquisition system complete the design.

In collaboration with two nonprofit agencies -- Trees, Water and People (based in the United States) and AHDESA (the Honduran Association for Development) -- Bond and Roden took their sampling cart to Honduras, where for two weeks they measured emissions from a number of traditional cookstoves. The researchers are now comparing their field measurements with previous laboratory studies, and examining the implications upon human health and global climate modeling.

"Scientists have been assuming certain properties of particles based on testing performed in laboratories," Roden said. "We are finding, however, that the properties really depend upon the conditions under which the wood is burned, and those properties in turn affect the climate differently."

Particle characteristics depend, for example, upon whether the fire is flaming or smoldering. Wood size also makes a big difference. Because larger pieces don’t heat up as fast, more volatile material can be released over longer periods. The bottom line, Roden said, is that not much testing has been performed on the kinds of traditional technology that emit most of the particles in the atmosphere. Much more work needs to be done.

"This was a pilot program and provided a baseline study on emissions," Bond said. "Improved, fuel-efficient and pollutant-reducing cookstoves have been developed and are being distributed throughout villages in Honduras by the nonprofits that we work with. We will return next summer to measure and compare the emissions from the new stoves."

The researchers described their sampling cart and presented early results at the American Geophysical Union meeting in San Francisco.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>