Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Uncertainty with CO2 Rise Due to Uncertainty About Aerosols

02.11.2004


This graph shows estimates of the influences of various factors (greenhouse gases, ozone, aerosols, and other) on climate change over the industrial period, and their combined total influence. Red brackets indicate the range of uncertainty for each factor and the total. The uncertainty for the "total" estimate is so large because of the large uncertainty in the estimated influence of aerosols. Shrinking the uncertainty associated with the total to a value that is useful for interpreting Earths climate sensitivity requires a major reduction in the uncertainty associated with the influence of aerosols.


Climate scientists agree that atmospheric carbon dioxide (CO2) has increased about 35 percent over the industrial period and that it will continue to rise so that CO2 will reach double its pre-industrial value well before the end of this century. How much this doubled CO2 concentration will raise Earth’s global mean temperature, however, remains quite uncertain and is the subject of intense research — and heated debate.

In a paper to be published in the November issue of the Journal of the Air and Waste Management Association, Stephen Schwartz, an atmospheric scientist at the U.S. Department of Energy’s Brookhaven National Laboratory, argues that much of the reason for the present uncertainty in the climatic effect of increased CO2 arises from uncertainty about the influence of atmospheric aerosols, tiny particles in the air. Schwartz, who is also chief scientist of the Department of Energy’s Atmospheric Science Program, points out that aerosols scatter and absorb light and modify the properties of clouds, making them brighter and thus able to reflect more incoming solar radiation before it reaches Earth’s surface.

“Because these aerosol particles, like CO2, are introduced into the atmosphere as a consequence of industrial processes such as fossil fuel combustion,” says Schwartz, “they have been exerting an influence on climate over the same period of time as the increase in CO2, and could thus very well be masking much of the influence of that greenhouse gas.” However, he emphasizes, the influence of aerosols is not nearly so well understood as the influence of greenhouse gases.



As Schwartz documents, the uncertainty in the climate influence of atmospheric aerosols limits any inference that can be drawn about future climate sensitivity — how much the temperature would rise due to CO2 doubling alone — from the increase in global mean temperature already observed over the industrial period.

The global warming of 0.5 degrees Celsius (0.9 degrees Fahrenheit) that has taken place since 1900 suggests that, if there were no aerosol influence, the effect of CO2 doubling on mean global temperature would be rather low — a rise of 0.9 degrees Celsius (1.6 degrees Fahrenheit). But, the likelihood that aerosols have been offsetting some of the warming caused by CO2 all along, says Schwartz, means that the observed 0.5-degree-Celsius temperature rise is just the part of the CO2 effect we can “see” — the tip of the greenhouse “iceberg.” So the effect of doubling CO2, holding everything else constant, he says, might be three or more times as great.
“Knowledge of Earth’s climate sensitivity is central to informed decision-making regarding future carbon dioxide emissions and developing strategies to cope with a greenhouse-warmed world,” Schwartz says. However, as he points out, not knowing how much aerosols offset greenhouse warming makes it impossible to refine estimates of climate sensitivity. Right now, climate models with low sensitivity to CO2 and those with high sensitivity are able to reproduce the temperature change observed over the industrial period equally well by using different values of the aerosol influence, all of which lie within the uncertainty of present estimates.

“In order to appreciably reduce uncertainty in Earth’s climate sensitivity the uncertainty in aerosol influences on climate must be reduced at least threefold,” Schwartz concludes. He acknowledges that such a reduction in uncertainty presents an enormous challenge to the aerosol research community.

An editorial accompanying the paper credits Schwartz with presenting “a unique argument challenging the research community to reduce the uncertainty in aerosol forcing of climate change in order to reduce the uncertainty in climate sensitivity to an extent that would be more useful to decision makers.” The editorial also suggests that, “Schwartz’s calculations are not only of interest for the issue of climate change but may serve as a paradigm for environmental issues in general.”

This research was funded by the Office of Biological and Environmental Research within the U.S. Department of Energy’s Office of Science.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>