Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Uncertainty with CO2 Rise Due to Uncertainty About Aerosols

02.11.2004


This graph shows estimates of the influences of various factors (greenhouse gases, ozone, aerosols, and other) on climate change over the industrial period, and their combined total influence. Red brackets indicate the range of uncertainty for each factor and the total. The uncertainty for the "total" estimate is so large because of the large uncertainty in the estimated influence of aerosols. Shrinking the uncertainty associated with the total to a value that is useful for interpreting Earths climate sensitivity requires a major reduction in the uncertainty associated with the influence of aerosols.


Climate scientists agree that atmospheric carbon dioxide (CO2) has increased about 35 percent over the industrial period and that it will continue to rise so that CO2 will reach double its pre-industrial value well before the end of this century. How much this doubled CO2 concentration will raise Earth’s global mean temperature, however, remains quite uncertain and is the subject of intense research — and heated debate.

In a paper to be published in the November issue of the Journal of the Air and Waste Management Association, Stephen Schwartz, an atmospheric scientist at the U.S. Department of Energy’s Brookhaven National Laboratory, argues that much of the reason for the present uncertainty in the climatic effect of increased CO2 arises from uncertainty about the influence of atmospheric aerosols, tiny particles in the air. Schwartz, who is also chief scientist of the Department of Energy’s Atmospheric Science Program, points out that aerosols scatter and absorb light and modify the properties of clouds, making them brighter and thus able to reflect more incoming solar radiation before it reaches Earth’s surface.

“Because these aerosol particles, like CO2, are introduced into the atmosphere as a consequence of industrial processes such as fossil fuel combustion,” says Schwartz, “they have been exerting an influence on climate over the same period of time as the increase in CO2, and could thus very well be masking much of the influence of that greenhouse gas.” However, he emphasizes, the influence of aerosols is not nearly so well understood as the influence of greenhouse gases.



As Schwartz documents, the uncertainty in the climate influence of atmospheric aerosols limits any inference that can be drawn about future climate sensitivity — how much the temperature would rise due to CO2 doubling alone — from the increase in global mean temperature already observed over the industrial period.

The global warming of 0.5 degrees Celsius (0.9 degrees Fahrenheit) that has taken place since 1900 suggests that, if there were no aerosol influence, the effect of CO2 doubling on mean global temperature would be rather low — a rise of 0.9 degrees Celsius (1.6 degrees Fahrenheit). But, the likelihood that aerosols have been offsetting some of the warming caused by CO2 all along, says Schwartz, means that the observed 0.5-degree-Celsius temperature rise is just the part of the CO2 effect we can “see” — the tip of the greenhouse “iceberg.” So the effect of doubling CO2, holding everything else constant, he says, might be three or more times as great.
“Knowledge of Earth’s climate sensitivity is central to informed decision-making regarding future carbon dioxide emissions and developing strategies to cope with a greenhouse-warmed world,” Schwartz says. However, as he points out, not knowing how much aerosols offset greenhouse warming makes it impossible to refine estimates of climate sensitivity. Right now, climate models with low sensitivity to CO2 and those with high sensitivity are able to reproduce the temperature change observed over the industrial period equally well by using different values of the aerosol influence, all of which lie within the uncertainty of present estimates.

“In order to appreciably reduce uncertainty in Earth’s climate sensitivity the uncertainty in aerosol influences on climate must be reduced at least threefold,” Schwartz concludes. He acknowledges that such a reduction in uncertainty presents an enormous challenge to the aerosol research community.

An editorial accompanying the paper credits Schwartz with presenting “a unique argument challenging the research community to reduce the uncertainty in aerosol forcing of climate change in order to reduce the uncertainty in climate sensitivity to an extent that would be more useful to decision makers.” The editorial also suggests that, “Schwartz’s calculations are not only of interest for the issue of climate change but may serve as a paradigm for environmental issues in general.”

This research was funded by the Office of Biological and Environmental Research within the U.S. Department of Energy’s Office of Science.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>