Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A treatment, not a cure: Calcium silicate neutralizes an acidic stream

05.10.2004


As a result of fossil fuel emissions, many freshwater bodies in eastern North America have become acidified. When combusted, fossil fuels release sulfur dioxide and nitrogen oxide, the precursors to acid precipitation, into the atmosphere. Persistent exposure to these pollutants, which return to Earth in rain, snow, sleet, hail and fog, can compromise the health of aquatic ecosystems.



In a recent Restoration Ecology paper, Institute of Ecosystem Studies President and Director Dr. Gene E. Likens, with colleagues, explores a new approach to restoring acidified streams, the addition of calcium silicate. The paper is the first to document the neutralizing effects of Wollastonite, a calcium silicate, on an acidic stream.

The research was performed at the Hubbard Brook Experimental Forest, located in the White Mountains of New Hampshire. Likens, who discovered acid rain at Hubbard Brook in the 1960s, has been investigating human-accelerated environmental change there for over four decades. A network of researchers and agencies, including over 70 scientists, has made the 3,160-hectare forest one of the most intensively studied watersheds in the world.


"Years of monitoring have documented that Hubbard Brook receives high levels of acid precipitation from emissions largely originating at Midwestern utility plants, as a result many streams on the site are acidic." Likens comments. Adding that, "The only way to successfully combat stream acidity is through improved air quality. Until that happens, we are exploring short-term methods of restoring water quality to sensitive sites."

Symptoms of acidified streams include a drop in pH, calcium, and dissolved inorganic carbon and an increase in metals like aluminum. When pH-levels decline, a stream is said to have lost its acid neutralizing capacity (ANC). Aquatic and semi-aquatic animals, such as fish and salamanders, are more prone to stress and disease when exposed to acidity and heavy metals.

As a remedy for acid stomach, people reach for Tums, or a similar calcium-based acid reducer. When attempting to increase pH-levels in acidic streams, scientists have historically used various forms of limestone, a natural source of calcium carbonate. Its neutralizing effects are short-lived, however, and can generate extreme fluctuations in water chemistry. Recognizing the limitations of limestone, Likens and colleagues looked to another material to neutralize an acidified stream at Hubbard Brook-- Wollastonite.

Over one hundred and thirty pounds (61kg) of this naturally occurring calcium silicate mineral, mined from the Adirondacks and manufactured into a pellet form, was manually applied to the study stream. Pellets were added to 50-meters of the 910-meter stream, including the stream channel and adjacent stream bank. Researchers took extensive measurements of water attributes, such as pH and acid neutralizing capacity, before, during and after the application.

Despite the small treatment area, the buffering effects of the Wollastonite were long lasting. By adding the pellets to 5.5% of the stream, acidity was suppressed for over four months. It is likely that a larger addition would have resulted in a longer neutralizing effect. Wollastonite degraded slowly in the system; as a result water chemistry fluctuations were smaller than seen during limestone additions.

While the study’s findings are useful to land managers looking for new methods of temporarily neutralizing acid streams, Likens is quick to comment that, "Manually adding buffering agents to acidic streams will never solve the acid rain problem. At most, it is a way to buy time until the real solution emerges-- a reduction in air pollution."

He goes on to warn that, "Viewing calcium applications as a prescriptive cure for acid rain is like a runner viewing steroids as a cure for a bad knee. At the end of the race, when the steroids have worn off, the runner is left limping. Calcium additions, which are cost and labor-intensive, temporarily mask symptoms. They don’t alleviate underlying causes, they are not feasible on a landscape scale and they will not protect our nation’s freshwater resources."

The Wollastonite stream application was part of a larger watershed-level addition. To learn more about how calcium silicate impacted forests and wetlands, visit an overview on the Hubbard Brook website: http://www.hubbardbrook.org/yale/watersheds/w1/

The following coauthors were integral in conducting the Wollastonite addition research and preparing the Restoration Ecology paper. Several were IES graduate students when they participated in the project (*).

Don Buso, Institute of Ecosystem Studies
*Brian K. Dresser
*Emily S. Bernhardt, University of Maryland
Robert O. Hall, Jr., University ot Wyoming
*Kate H. Macneale, Northwest Fisheries Science Center
Scott W. Bailey, USDA Forest Service

Lori Quillen | EurekAlert!
Further information:
http://www.ecostudies.org

More articles from Ecology, The Environment and Conservation:

nachricht When corals eat plastics
24.05.2018 | Justus-Liebig-Universität Gießen

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>