Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A treatment, not a cure: Calcium silicate neutralizes an acidic stream

05.10.2004


As a result of fossil fuel emissions, many freshwater bodies in eastern North America have become acidified. When combusted, fossil fuels release sulfur dioxide and nitrogen oxide, the precursors to acid precipitation, into the atmosphere. Persistent exposure to these pollutants, which return to Earth in rain, snow, sleet, hail and fog, can compromise the health of aquatic ecosystems.



In a recent Restoration Ecology paper, Institute of Ecosystem Studies President and Director Dr. Gene E. Likens, with colleagues, explores a new approach to restoring acidified streams, the addition of calcium silicate. The paper is the first to document the neutralizing effects of Wollastonite, a calcium silicate, on an acidic stream.

The research was performed at the Hubbard Brook Experimental Forest, located in the White Mountains of New Hampshire. Likens, who discovered acid rain at Hubbard Brook in the 1960s, has been investigating human-accelerated environmental change there for over four decades. A network of researchers and agencies, including over 70 scientists, has made the 3,160-hectare forest one of the most intensively studied watersheds in the world.


"Years of monitoring have documented that Hubbard Brook receives high levels of acid precipitation from emissions largely originating at Midwestern utility plants, as a result many streams on the site are acidic." Likens comments. Adding that, "The only way to successfully combat stream acidity is through improved air quality. Until that happens, we are exploring short-term methods of restoring water quality to sensitive sites."

Symptoms of acidified streams include a drop in pH, calcium, and dissolved inorganic carbon and an increase in metals like aluminum. When pH-levels decline, a stream is said to have lost its acid neutralizing capacity (ANC). Aquatic and semi-aquatic animals, such as fish and salamanders, are more prone to stress and disease when exposed to acidity and heavy metals.

As a remedy for acid stomach, people reach for Tums, or a similar calcium-based acid reducer. When attempting to increase pH-levels in acidic streams, scientists have historically used various forms of limestone, a natural source of calcium carbonate. Its neutralizing effects are short-lived, however, and can generate extreme fluctuations in water chemistry. Recognizing the limitations of limestone, Likens and colleagues looked to another material to neutralize an acidified stream at Hubbard Brook-- Wollastonite.

Over one hundred and thirty pounds (61kg) of this naturally occurring calcium silicate mineral, mined from the Adirondacks and manufactured into a pellet form, was manually applied to the study stream. Pellets were added to 50-meters of the 910-meter stream, including the stream channel and adjacent stream bank. Researchers took extensive measurements of water attributes, such as pH and acid neutralizing capacity, before, during and after the application.

Despite the small treatment area, the buffering effects of the Wollastonite were long lasting. By adding the pellets to 5.5% of the stream, acidity was suppressed for over four months. It is likely that a larger addition would have resulted in a longer neutralizing effect. Wollastonite degraded slowly in the system; as a result water chemistry fluctuations were smaller than seen during limestone additions.

While the study’s findings are useful to land managers looking for new methods of temporarily neutralizing acid streams, Likens is quick to comment that, "Manually adding buffering agents to acidic streams will never solve the acid rain problem. At most, it is a way to buy time until the real solution emerges-- a reduction in air pollution."

He goes on to warn that, "Viewing calcium applications as a prescriptive cure for acid rain is like a runner viewing steroids as a cure for a bad knee. At the end of the race, when the steroids have worn off, the runner is left limping. Calcium additions, which are cost and labor-intensive, temporarily mask symptoms. They don’t alleviate underlying causes, they are not feasible on a landscape scale and they will not protect our nation’s freshwater resources."

The Wollastonite stream application was part of a larger watershed-level addition. To learn more about how calcium silicate impacted forests and wetlands, visit an overview on the Hubbard Brook website: http://www.hubbardbrook.org/yale/watersheds/w1/

The following coauthors were integral in conducting the Wollastonite addition research and preparing the Restoration Ecology paper. Several were IES graduate students when they participated in the project (*).

Don Buso, Institute of Ecosystem Studies
*Brian K. Dresser
*Emily S. Bernhardt, University of Maryland
Robert O. Hall, Jr., University ot Wyoming
*Kate H. Macneale, Northwest Fisheries Science Center
Scott W. Bailey, USDA Forest Service

Lori Quillen | EurekAlert!
Further information:
http://www.ecostudies.org

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>