Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catalytic converter gets the pollution out of diesel engines

08.09.2004


In the near future the usual summer ozone peaks exceeding the allowed threshold may be a thing of the past: the Paul Scherrer Institute (PSI) in Switzerland has developed a new type of catalytic conversion system, which filters nearly all nitrogen oxides out of diesel exhaust gases using a refined control technology. This eliminates the main cause of summer ozone build-up. The process requires a non-toxic urea solution, which future diesel engine commercial vehicles can take with them in a separate refillable tank.



Diesel engines are looked upon as relatively economic and environment-friendly, because they have a better fuel efficiency than gasoline engines. But burning diesel also has a grave disadvantage: it produces nitrogen oxides, which enhance the build-up of hazardous ozone during periods of high solar radiation. “In the end, diesel engines today are the main cause for high ozone values during summer”, says Oliver Kroecher, Exhaust Gas Aftertreatment Group Manager at PSI. Already by 2005, exhaust gas standards for diesel engines are to be tightened massively throughout Europe. And further steps reducing the threshold are planned.

To comply with the new threshold values engine manufacturers are now focussing on the so-called SCR (Selective Catalytic Reduction) technology. Here nitrogen oxides are transformed into nitrogen and water vapour using a catalytic converter and by adding a harmless urea solution. This compelling principle could establish itself in the foreseeable future in all commercial diesel-powered commercial vehicles. In future drivers should get used to refilling an additional urea tank.


Zero emission for combustion engines is long term objective PSI scientists have now developed a practicable SCR catalytic converter that disposes over 90% of the nitrogen oxides in exhaust gases. Kroecher describes the PSI advantages over other SCR prototypes: “Our converter has minimal dimensions and can prevent the escape of ammonia generated during the reaction, thanks to an ingenious regulating system.” To optimise the nitrogen oxide dismantling, the amount of urea added adapts continuously to different drive phases. “Our regulator system all but anticipates the engine activity and can therefore react fast enough to changes”, says Kroecher.

With the nitrogen oxide output going down the problem with harmful soot particles from diesel engines will also be defused. While diesel engines could be tuned to a low soot production, this will however increase the nitrogen oxides. The new SCR catalytic converter strongly reduces this drawback. PSI researchers want to achieve even more. Kroecher: “In the long run, we’re working on zero-emission concepts, in order to develop combustion types creating no other pollutants than carbon dioxide.”

The work on the SCR catalytic converter was carried out together with industry partners and with the support of the Swiss Federal Office of Energy. The Measurement and Control Laboratory at the Swiss Federal Institute of Technology (ETH) in Zurich developed the advanced catalytic converter process strategy. Commercial products based on the PSI know-how will be introduced to the market in the near future.

Beat Gerber | alfa
Further information:
http://www.psi.ch

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>