Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catalytic converter gets the pollution out of diesel engines

08.09.2004


In the near future the usual summer ozone peaks exceeding the allowed threshold may be a thing of the past: the Paul Scherrer Institute (PSI) in Switzerland has developed a new type of catalytic conversion system, which filters nearly all nitrogen oxides out of diesel exhaust gases using a refined control technology. This eliminates the main cause of summer ozone build-up. The process requires a non-toxic urea solution, which future diesel engine commercial vehicles can take with them in a separate refillable tank.



Diesel engines are looked upon as relatively economic and environment-friendly, because they have a better fuel efficiency than gasoline engines. But burning diesel also has a grave disadvantage: it produces nitrogen oxides, which enhance the build-up of hazardous ozone during periods of high solar radiation. “In the end, diesel engines today are the main cause for high ozone values during summer”, says Oliver Kroecher, Exhaust Gas Aftertreatment Group Manager at PSI. Already by 2005, exhaust gas standards for diesel engines are to be tightened massively throughout Europe. And further steps reducing the threshold are planned.

To comply with the new threshold values engine manufacturers are now focussing on the so-called SCR (Selective Catalytic Reduction) technology. Here nitrogen oxides are transformed into nitrogen and water vapour using a catalytic converter and by adding a harmless urea solution. This compelling principle could establish itself in the foreseeable future in all commercial diesel-powered commercial vehicles. In future drivers should get used to refilling an additional urea tank.


Zero emission for combustion engines is long term objective PSI scientists have now developed a practicable SCR catalytic converter that disposes over 90% of the nitrogen oxides in exhaust gases. Kroecher describes the PSI advantages over other SCR prototypes: “Our converter has minimal dimensions and can prevent the escape of ammonia generated during the reaction, thanks to an ingenious regulating system.” To optimise the nitrogen oxide dismantling, the amount of urea added adapts continuously to different drive phases. “Our regulator system all but anticipates the engine activity and can therefore react fast enough to changes”, says Kroecher.

With the nitrogen oxide output going down the problem with harmful soot particles from diesel engines will also be defused. While diesel engines could be tuned to a low soot production, this will however increase the nitrogen oxides. The new SCR catalytic converter strongly reduces this drawback. PSI researchers want to achieve even more. Kroecher: “In the long run, we’re working on zero-emission concepts, in order to develop combustion types creating no other pollutants than carbon dioxide.”

The work on the SCR catalytic converter was carried out together with industry partners and with the support of the Swiss Federal Office of Energy. The Measurement and Control Laboratory at the Swiss Federal Institute of Technology (ETH) in Zurich developed the advanced catalytic converter process strategy. Commercial products based on the PSI know-how will be introduced to the market in the near future.

Beat Gerber | alfa
Further information:
http://www.psi.ch

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>