Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental Fate of Nanoparticles

30.08.2004


Materials made from particles one-millionth the size of a fine-point pen tip are touted daily for their current uses and dreamed of possibilities, but a pressing question remains as to the environmental impact of manufactured nano-sized materials.



Purdue University scientists are investigating the interactions between these tiny, many-sided structures and the environment. To further this research, the National Science Foundation (NSF) and Environmental Protection Agency (EPA) have awarded grants totaling nearly $2 million to the Purdue Nanoscale Interdisciplinary Research Team and a colleague from the University of Minnesota.

"This is one of the first major studies solely interested in the environmental fate of carbon-based manufactured nanoparticles," said Purdue’s Ron Turco, principal investigator on the project. "We will test Buckyballs and other manufactured nanomaterials in all types of soil and in water to determine their effect on the environment, including any toxicity toward bacteria and fungi that are key indicators of damage to the ecosystem."


Buckyballs are multi-sided, nano-sized particles that look like hollow soccer balls. The full name for the cluster of carbon atoms is Buckminsterfullerene, after the American architect R. Buckminster Fuller. His design for the geodesic dome is much like the shape of Buckyballs, also known as fullerenes.

First found in a meteorite in 1969, Buckyballs are the third naturally occurring pure carbon molecules known. The others are graphite and diamonds. Experts say that tiny carbon-based manufactured nanotubes are 100 to 1,000 times stronger than steel.

In 1985, researchers began making Buckyballs, which led to a Nobel Prize. These are among the carbon-based manufactured nanoparticles the Purdue scientists will study. Other studies are delving into various aspects of all types of nanoparticles.

"We want to know what would happen if these materials enter the environment in either high or low concentrations," Turco said. "What happens when they get in the soil or the water? I don’t think there will be a problem, but we need to have data."

The scientists will investigate not only the manufactured nanoparticles’ affect on the environment, but also the environment’s affect on them. Using techniques that they employed in assessing the environmental impact of other materials such as pesticides, they will examine how bacteria and fungi in soil and water contribute to the degradation of manufactured nanoparticles.

Other studies are delving into aspects of naturally occurring nanoparticles.

The research team, which was formed by Purdue’s Environmental Science and Engineering Institute, will conduct their work in laboratory settings using all types of soil and water, said Turco, an environmental microbiologist in the School of Agriculture.

Nanomaterials already are used for stain-resistant slacks, sunscreens, cosmetics, automobile paint and bowling balls. In fact, the Eastman Kodak Co. and other corporations began employing nano-sized material as early as the 1930s. Kodak’s use of the material was nano-silver for film coating.

Scientists are testing sensors that use nano-scale materials for detecting biological weapons and other pathogens that may cause disease. Researchers also believe that stronger-than-steel materials made from carbon-based nanotubes could produce the next generation of electronics and even tougher bulletproof vests. Drug delivery and food production may be revolutionized by nanoparticles, which derive the nano part of their name from the Greek meaning dwarf.

The National Science Foundation funding is a four-year, $1.6 million grant for the research team’s Response of Aquatic and Terrestrial Microorganisms to Carbon-based Manufactured Nanoparticles project. The EPA is providing $365,000 over three years to study implications of the materials on soil processes and aquatic toxicity.

The project is composed of five parts handled by seven researchers. The Purdue researchers are Turco, Department of Agronomy; Bruce Applegate, Department of Food Science; Natalie Carroll, Department of Agricultural and Biological Engineering and Department of Youth Development and Agriculture Education; Tim Filley, Department of Earth and Atmospheric Sciences; and Chad Jafvert and Loring Nies, both of the School of Civil Engineering. Robert Blanchette, of the University of Minnesota’s Department of Plant Pathology, also is on the team. Turco and Filley also are members of the Purdue Climate Change Research Center. Applegate is a member of the Center for Food Safety Engineering.

The project components and researchers involved are:

  • Determine the degradability and solubility of carbon-based manufactured nanoparticles in soils and water - Jafvert.
  • Determine baseline information on the toxic effects of carbon-based manufactured nanoparticles on aquatic bacteria - Applegate and Turco.
  • Examine how microbes in the soil react to and alter themselves due to the presence of carbon-based manufactured nanoparticles - Nies, Filley and Turco.
  • Determine how carbon-based manufactured nanoparticles are broken down in the soil, how long the degradation takes, and how the change in their chemical structure during this process affects soil toxicity and processes - Filley, Blanchette and Turco.
  • Educational outreach to promote public awareness and understanding of nanoscale science and its applications - Carroll.

| newswise
Further information:
http://www.esei.purdue.edu/
http://www.nsf.gov
http://www.epa.gov

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>