Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool predicts how long pollutants will stay in soil

27.08.2004


Equation could help decide future of land tainted with pesticides, pharmaceuticals



Building on an idea developed by medicinal chemists, Johns Hopkins researchers have devised a new mathematical tool that accurately predicts how long certain pollutants -- including pesticides and pharmaceuticals -- will remain in soil.
The work is timely because researchers and public officials have become increasingly concerned about pharmaceuticals and personal care products that have been detected in soil and water. Environmental engineers are seeking better ways to track these emerging pollutants, which tend to be more complex and water-soluble than previous contaminants of concern, such as chlorinated solvents and petroleum byproducts.

This new modeling approach is important because environmental regulators and cleanup consultants need to know the extent to which hazardous contaminants will linger on a piece of land and the rate at which they will migrate toward critical water resources and supplies. The new approach will help them decide whether the pollutants need to be removed and how best to accomplish this, the researchers say.



"If we release chemicals into the environment, we need to know what will happen to them," said Thanh Helen Nguyen, a graduate student who played a leading role in adapting the math tool and demonstrating its effectiveness. "For many years, we’ve made predictions with a method that doesn’t work very well on many chemical pollutants in soil. This new tool does a much better job."

Nguyen, who is working toward her doctorate in the Department of Geography and Environmental Engineering, described the improved pollution predictor during an Aug. 26 presentation in Philadelphia at the 228th national meeting of the American Chemical Society.

Although her own training is in geology and environmental engineering, Nguyen said the new tool is based on a breakthrough by chemists who study how medications move from the bloodstream into human tissue. At an American Chemical Society meeting last year, Nguyen heard a lecture in which Kai Uwe Goss, a senior research scientist at the Swiss Federal Institute of Environmental Science and Technology, suggested that this approach might be used to predict the behavior of soil pollutants. Nguyen took up the challenge and started to collaborate with Goss and her doctoral advisor on the new approach, supported by a National Science Foundation grant.

She focused on the fate of non-ionic chemicals, meaning those lacking an electrical charge, including some solvents, pesticides and pharmaceuticals. Through intentional or accidental dumping, such contaminants often wind up in soil. Before approving new pesticides or making cleanup decisions, public officials need to know how long these chemical squatters will stay in the dirt.

This requires an understanding of how these pollutants interact with soil, which is a mixture of minerals and natural organic matter, such as decayed vegetation. Charged chemicals usually cling to the mineral content, but non-ionic chemicals tend to make themselves at home in the soil’s natural organic matter. For many years, environmental chemists have made predictions about how long the non-ionic pollutants will stay there by using octanol, an organic solvent, as a chemical stand-in for natural organic material. "But this technique doesn’t work very well for polar pollutants that interact with surrounding solids in a more complex way," Nguyen said.

To find out if the medicinal chemists’ technique would yield better results, the doctoral student gathered 359 data points from published experiments involving 75 chemical pollutants. She then borrowed a medicinal chemist’s method of converting each of the 75 pollutants to a mathematical representation. "We worked with these numbers and came up with a very simple equation that predicts what fraction of these non-charged chemicals will make their home in the soil rather than water under any given set of conditions," Nguyen said. "The equation works very well with complicated chemical structures like pesticides and pharmaceuticals."

Her faculty advisor, William P. Ball, a professor in the Department of Geography and Environmental Engineering, said, "We’ve had a generally positive reaction to this technique so far." He added that the researchers’ goal is "to move this into the mainstream so that more practitioners and regulators in the environmental engineering field can take advantage of it."

Nguyen agreed. "Over the past several decades, more than 90 equations involving the old octanol approach have been developed, and those equations do not work very well on many chemicals," she said. "More people should be using this new tool because it’s easier and more accurate."

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>