Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When it rains, it pours - Even for the drops that lead to drizzle

26.08.2004


New theory on drizzle formation says a few big drops get all the water



In research that could lead to more accurate weather forecasts and climate models, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory say a physical limit on the number of cloud droplets that grow big enough to form drizzle paradoxically makes drizzle form faster. That’s because those few droplets that cross the drizzle "barrier" readily collect enough surrounding droplets to fall -- instead of staying stuck in the clouds competing for a limited water supply and never getting quite big enough.

Atmospheric physical chemist Robert McGraw, lead author of the Brookhaven study, will present this research on Thursday, August 26, 2004, at the 228th national meeting of the American Chemical Society in Philadelphia, Pennsylvania (Pennsylvania Convention Center, Room 103A, 9:40 a.m. Eastern Time), together with Brookhaven cloud physicist and co-author Yangang Liu. The research will also be published in an upcoming edition of Physical Review E.


"Drizzle is an important cloud process that plays a crucial role in regulating Earth’s energy balance and water cycle, because drizzle affects how long clouds persist," says McGraw. "So understanding drizzle formation will help scientists predict both local weather and the effects of clouds on global climate."

Older theories of drizzle formation left scientists with a puzzle: None explained how drizzle could form within the typical cloud lifetime. In these earlier models, droplets simply coagulated with each other to reach larger size. In this process, many droplets are free to begin growing, but they all end up competing for the available cloud water at the same time. This competition prevents any of them from quickly reaching a size large enough to begin falling as drizzle.

The new theory resolves the puzzle through the discovery of a statistical barrier to the number of drops that achieve drizzle size, a barrier that paradoxically speeds up drizzle formation.

Under the new theory, the rate of drizzle drop formation is dependent on the cloud liquid water content, the droplet concentration, and turbulence. Atmospheric turbulence causes fluctuations in the rates of droplet growth and evaporation in clouds. Once a drop grows large enough to fall under gravity, it begins to collect the smaller cloud droplets that surround it.

This process is called collection and it refers to the volumetric gain of a specified drop large enough to have a significant gravitational fall velocity so as to accrete the smaller, slower falling droplets that typify the main population of the cloud. Collection is thus an additional growth mechanism that, following the axiom ’the rich get richer,’ or, ’when it rains, it pours,’ becomes available to those relatively few droplets that, through chance fluctuations, reach fall velocity size.

"Those few droplets that do cross the barrier experience less competition for available cloud water and, thus, rapidly reach collection size," McGraw says.

"Of course, if the barrier is too high -- as it often is in polluted clouds with high droplet concentrations -- then no droplets can cross and drizzle can’t form," he adds. "Other things being equal, such drizzle suppression tends to increase the lifetimes of clouds formed in polluted areas, as compared to those formed in unpolluted areas, such as over the ocean." This could have important implications for understanding the climate effects of aerosol pollutants via their influence on cloud lifetime and cloud cover.

In the future, the scientists plan to test the drizzle theory by comparing it with aircraft and remote-sensing data on drizzle formation. They expect that this research will allow weather forecasters and climate modelers to improve their predictions.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>