Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When it rains, it pours - Even for the drops that lead to drizzle

26.08.2004


New theory on drizzle formation says a few big drops get all the water



In research that could lead to more accurate weather forecasts and climate models, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory say a physical limit on the number of cloud droplets that grow big enough to form drizzle paradoxically makes drizzle form faster. That’s because those few droplets that cross the drizzle "barrier" readily collect enough surrounding droplets to fall -- instead of staying stuck in the clouds competing for a limited water supply and never getting quite big enough.

Atmospheric physical chemist Robert McGraw, lead author of the Brookhaven study, will present this research on Thursday, August 26, 2004, at the 228th national meeting of the American Chemical Society in Philadelphia, Pennsylvania (Pennsylvania Convention Center, Room 103A, 9:40 a.m. Eastern Time), together with Brookhaven cloud physicist and co-author Yangang Liu. The research will also be published in an upcoming edition of Physical Review E.


"Drizzle is an important cloud process that plays a crucial role in regulating Earth’s energy balance and water cycle, because drizzle affects how long clouds persist," says McGraw. "So understanding drizzle formation will help scientists predict both local weather and the effects of clouds on global climate."

Older theories of drizzle formation left scientists with a puzzle: None explained how drizzle could form within the typical cloud lifetime. In these earlier models, droplets simply coagulated with each other to reach larger size. In this process, many droplets are free to begin growing, but they all end up competing for the available cloud water at the same time. This competition prevents any of them from quickly reaching a size large enough to begin falling as drizzle.

The new theory resolves the puzzle through the discovery of a statistical barrier to the number of drops that achieve drizzle size, a barrier that paradoxically speeds up drizzle formation.

Under the new theory, the rate of drizzle drop formation is dependent on the cloud liquid water content, the droplet concentration, and turbulence. Atmospheric turbulence causes fluctuations in the rates of droplet growth and evaporation in clouds. Once a drop grows large enough to fall under gravity, it begins to collect the smaller cloud droplets that surround it.

This process is called collection and it refers to the volumetric gain of a specified drop large enough to have a significant gravitational fall velocity so as to accrete the smaller, slower falling droplets that typify the main population of the cloud. Collection is thus an additional growth mechanism that, following the axiom ’the rich get richer,’ or, ’when it rains, it pours,’ becomes available to those relatively few droplets that, through chance fluctuations, reach fall velocity size.

"Those few droplets that do cross the barrier experience less competition for available cloud water and, thus, rapidly reach collection size," McGraw says.

"Of course, if the barrier is too high -- as it often is in polluted clouds with high droplet concentrations -- then no droplets can cross and drizzle can’t form," he adds. "Other things being equal, such drizzle suppression tends to increase the lifetimes of clouds formed in polluted areas, as compared to those formed in unpolluted areas, such as over the ocean." This could have important implications for understanding the climate effects of aerosol pollutants via their influence on cloud lifetime and cloud cover.

In the future, the scientists plan to test the drizzle theory by comparing it with aircraft and remote-sensing data on drizzle formation. They expect that this research will allow weather forecasters and climate modelers to improve their predictions.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>