Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change could doom Alaska’s tundra

04.08.2004


In the next 100 years, Alaska will experience a massive loss of its historic tundra, as global warming allows these vast regions of cold, dry, lands to support forests and other vegetation that will dramatically alter native ecosystems, an Oregon State University researcher said today.

Polar regions such as Alaska will be among the first to illustrate the profound impacts of climate change, said Dominique Bachelet, an associate professor in the OSU Department of Bioengineering and expert on the effects of climate change on terrestrial vegetation. She spoke at the annual meeting of the Ecological Society of America.

More precipitation, an overall loss of soil carbon, a probable reduction in forest fires and a likely increase in insect and pathogen attacks on trees are also projected by some of the most sophisticated computer models yet developed, Bachelet said. "The effects of climate change in Alaska will be among the most visible in the world," Bachelet said. "The tundra has no place else to go, and it will largely disappear from the Alaskan landscape, along with the related plant, animal and even human ecosystems that are based upon it."



The newest research suggests that 90 percent of Alaska’s tundra that was present in 1920 will be gone by 2100, less than a century from now, under one of the climate models projecting the most extreme warming. A model with more conservative estimates indicates that 77 percent of the tundra will disappear during that time.

Temperatures have already been above the historical norm in Alaska for the past 17 years. But about 100 years from now, the average annual temperature in Alaska may soar up to 13 degrees Fahrenheit higher in the worst case scenario predicted by climate models. Tundra is a cold, comparatively dry ecosystem that now covers much of Alaska, characterized by the permanently frozen deep soil layers called permafrost, few or no trees, grasses and dwarf shrubs, and an extremely short growing season. But it also supports brown bear, wolf, wolverine, caribou, arctic hare, mink, weasel, and lemming, and millions of migrating waterfowl. In summer it can feature thousands of lakes and large marshy areas.

According to Bachelet, despite some of the criticisms aimed at them, climate models appear to work better and achieve higher accuracy over longer rather than shorter periods of time.

"If you ask these models to predict exactly what the global climate will be in the summertime five years from now, that’s much more difficult because of the natural, short-term variations in weather and climate," Bachelet said. "But based on everything we’ve learned, when we predict what’s going to happen during a 20-year period about a century from now, we can be fairly confident. We also test these models by running them backward into the past, and the results are quite accurate."

Bachelet and her colleagues at OSU and the U.S. Forest Service have developed the Dynamic Global Vegetation Model MC1, an improved way of predicting what certain climate scenarios will mean in terms in of vegetation growth, plant and soil processes, carbon storage or emissions, forest fire, and other important ecological effects.

The latest simulations with this model were done with Alaska as a prelude to work with much of the world’s Arctic region, Bachelet said. "Some of this is not that surprising, the winters in Alaska are already getting milder and the summers warmer," Bachelet said. "Were already seeing glacial melting, movement in fish migrations, Inuits who are having to change their fishing and hunting habits because of melting ice."

But any changes so far pale in comparison of what’s to come, and fairly soon, Bachelet said. Among the predictions:

  • Boreal mixed forests could yield to a maritime and temperate conifer forest much like those of southeast Alaska, and cover huge areas of Alaska.
  • The only large area of remaining tundra in Alaska 100 years from now will be on its north coast.
  • Because of increases in precipitation and despite an increase in statewide biomass, forest fires should become less frequent overall and could shift from central Alaska to the northeast.
  • Insects and pathogens, which can adapt more readily to changing environmental conditions, may cause massive epidemics of plant disease and insect attack – in some cases causing large forest die-offs that could then lead to more fires, adding complexity to the picture.
  • The average annual temperatures in much of Alaska could increase by more than 13 degrees above a 1920-2000 average by the last decade of the 21st century, according to the most extreme climate scenario, and 8 degrees under a more conservative scenario.

There are some variables that could affect these projections, Bachelet said, such as major changes in ocean circulation patterns that could have unpredictable effects on regional climate. One such change that has been suggested – a shutdown of a major ocean current and circulation pattern in the North Atlantic ocean that currently is responsible for warming much of Europe – might have other ripple effects that would cause regional climate impacts to vary.

"You’ll always have some uncertainties when you are trying to predict the localized impact of global climate change," Bachelet said. "But it’s pretty certain that our global climate is warming up, and at this time, it looks like one of the major impacts will be on the tundra ecosystem of Alaska."

Dominique Bachelet | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>