Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Fall And Rise Of Forest Ecosystems

23.07.2004


Forest ecologists have long wondered why forests decline in the absence of catastrophic disturbances. A new study, in part funded by the British Ecological Society, and published in this week’s Science, has shed new light on this problem.

This study investigated natural forested stands across each of six ’chronosequences’ or sequences of soils of different ages since the most recent major disturbance. These sequences were located in a range of climatic zones, including northern Sweden (a series of forested islands near Arjeplog), Alaska, Hawaii, eastern Australia and two locations in southern New Zealand. All sequences consisted of forest stands on soils ranging in age from those formed very recently to those at least several thousand years old; the oldest soils studied were 4.1 million years old in Hawaii.

For all six sequences, forest biomass (mass of trees per unit area) increased initially as soil fertility increased. However, after thousands to tens of thousands of years, forest biomass declined sharply for all sequences, to a level where some sites could no longer support trees. The researchers found that this decline in all cases was due to reduced levels of plant-available phosphorus relative to nitrogen in the soil. As soils age, phosphorus becomes increasingly limiting for trees because it is not biologically renewable in the ecosystem. Conversely, nitrogen is biologically renewable (because atmospheric nitrogen can be converted by soil bacteria into forms of nitrogen that trees can use), so nitrogen limitation does not contribute to forest decline in these systems, contrary to popular views. There was also evidence from this study that phosphorous limitation during stage of forest decline negatively affected soil organisms, and therefore reduced their potential to release nutrients from the soil for maintaining tree growth.



These results have several implications. First they show that major disturbances are necessary for rejuvenating forest ecosystems. Disturbances which rejuvenate the system vary for different forests, but can include for example wildfire, glaciation, or volcanic activity. In the absences of these disturbances productive forests do not perpetuate indefinitely; eventually phosphorous becomes sufficiently limiting that forests with a high standing biomass can no longer be maintained. Second, they reveal that high biomass forest stands represent a transitional phase in the long term (in the order of thousands to tens of thousands of years) and if left without major disturbances will then decline. Finally they show that very similar patterns of decline, and mechanisms behind this decline, occur for very different types of forest throughout the world, spanning the boreal, temperate and tropical climatic zones.

The study was conducted by David Wardle from the Swedish University of Agricultural Sciences (Sweden) and Landcare Research (New Zealand), Richard Bardgett from Lancaster University (U.K.) and Lawrence Walker from the University of Nevada (USA).

Becky Allen | alfa
Further information:
http://www.britishecologicalsociety.org

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>