Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Best way to clean up toxic plumes? Give ’em a pill

01.04.2004


A staple of chemistry classroom demonstrations may offer a solution for cleaning up decades’ worth of toxic solvents polluting the environment, new research suggests.

Potassium permanganate is a disinfectant used by water treatment plants, and is sometimes also used to treat pollution stemming from industrial-grade solvents that were buried 30 to 40 years ago.

"But most people who use potassium permanganate to treat pollution pump it into a well in liquid form every day for a couple of months," said Frank Schwartz, a study co-author and a professor of geological sciences at Ohio State University. Like salt, potassium permanganate is granular and dissolves when it comes into contact with water.



"There’s often no control over where the potassium permanganate goes once it’s pumped into an injection well," Schwartz said. "The system is usually just as bad after the treatment as it was before."

So he and his colleagues created solid forms, or chunks, of organic material that contain potassium permanganate. When buried in wet soil, these chunks slowly dissolve over a matter of weeks and months. These chunks allow researchers to better control the distribution of potassium permanganate at a pollution site.

These toxic plumes can extend for miles. Health effects can be severe, with clusters of leukemia cases occasionally developing as people drink contaminated water, Schwartz said.

"We’re going after legacy contaminants – degreasers and solvents left over from nearly every manufacturer in the 1960s and ’70s who made something from metal" he said.

Schwartz conducted the study with David Li, a postdoctoral researcher in geology at Ohio State. Li presented the findings Wednesday in Anaheim at the meeting of the American Chemical Society.

So far, the researchers have only tested the time-released potassium permanganate chunks in laboratory experiments. But the results are promising. They added the chunks, which are about the size of a tapered candle, to experimental tanks of wet soil tainted with the solvents trichloroethene (TCE) and perchloroethene (PCE) – two compounds used in commercial dry-cleaning as well as to clean grease off of metal. The tanks ranged in size from a 10-gallon fish aquarium to a refrigerator turned on its side.

In these controlled experiments, the chemicals are converted into non-toxic components in a matter of weeks. In the field, however, Schwartz said it could take many years to rid an area of solvents at a given site.

"Some sites have a higher volume of solvents than other sites," he said. "But most sites have two things in common – a pure source of the solvent, usually found near the dump site, and plumes, where flowing water has dissolved some of the original chemical and carried it through underground aquifers."

These toxic plumes can extend for miles. Health effects can be severe, with clusters of leukemia cases occasionally developing as people drink contaminated water, Schwartz said.

The researchers believe that chunks containing potassium permanganate could stop plumes in their tracks and, as the potassium permanganate slowly dissolves, mixes with the solvents and eventually obliterates the plumes. The scientists’ next step is to test time-released potassium permanganate chunks in the field.

"Theoretically, these chunks could be made in whatever size is appropriate for the site that needs cleaned," Schwartz said. "We could put the chunks into pre-existing wells, or drill holes into the ground below the water table, insert the chunks and then cover them up. Ideally, we could leave the site alone for a year or two and eventually replace the chunks if necessary."

Potassium permanganate essentially eats away at TCE and PCE, turning these solvents into harmless minerals, water and carbon dioxide.

It’s also cheap and plentiful.

"Potassium permanganate is a much cheaper and much more cost effective way of managing and getting rid of solvents," Li said. "Time-released potassium permanganate could literally save hundreds of thousands, if not millions, of dollars in waste clean-up and management fees."

Current waste treatment methods include pumping tainted water out of the ground and treating it at the surface.

"This requires a constant source of electricity and continuous monitoring, and there’s always the chance that the system could break down," Schwartz said.

With potassium permanganate, there’s little chance that any would be left in the water supply once these reactions happen, Schwartz said.

"Potassium permanganate isn’t as serious a contaminant as a solvent, but you wouldn’t want to drink it," he said. "It also gets oxidized when it reacts with the solvents, and breaks down into harmless by-products."


Support for this research came from the U.S. Department of Energy and the Department of Interior.

Contact: Frank Schwartz, (614) 292 6196; frank@geology.ohio-state.edu. David Li, (614) 292-6193; li@geology.ohio-state.edu.

Written by Holly Wagner, (614) 292-8310; Wagner.235@osu.edu

Holly Wagner | EurekAlert!
Further information:
http://www.acs.ohio-state.edu/units/research/

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>