Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Best way to clean up toxic plumes? Give ’em a pill

01.04.2004


A staple of chemistry classroom demonstrations may offer a solution for cleaning up decades’ worth of toxic solvents polluting the environment, new research suggests.

Potassium permanganate is a disinfectant used by water treatment plants, and is sometimes also used to treat pollution stemming from industrial-grade solvents that were buried 30 to 40 years ago.

"But most people who use potassium permanganate to treat pollution pump it into a well in liquid form every day for a couple of months," said Frank Schwartz, a study co-author and a professor of geological sciences at Ohio State University. Like salt, potassium permanganate is granular and dissolves when it comes into contact with water.



"There’s often no control over where the potassium permanganate goes once it’s pumped into an injection well," Schwartz said. "The system is usually just as bad after the treatment as it was before."

So he and his colleagues created solid forms, or chunks, of organic material that contain potassium permanganate. When buried in wet soil, these chunks slowly dissolve over a matter of weeks and months. These chunks allow researchers to better control the distribution of potassium permanganate at a pollution site.

These toxic plumes can extend for miles. Health effects can be severe, with clusters of leukemia cases occasionally developing as people drink contaminated water, Schwartz said.

"We’re going after legacy contaminants – degreasers and solvents left over from nearly every manufacturer in the 1960s and ’70s who made something from metal" he said.

Schwartz conducted the study with David Li, a postdoctoral researcher in geology at Ohio State. Li presented the findings Wednesday in Anaheim at the meeting of the American Chemical Society.

So far, the researchers have only tested the time-released potassium permanganate chunks in laboratory experiments. But the results are promising. They added the chunks, which are about the size of a tapered candle, to experimental tanks of wet soil tainted with the solvents trichloroethene (TCE) and perchloroethene (PCE) – two compounds used in commercial dry-cleaning as well as to clean grease off of metal. The tanks ranged in size from a 10-gallon fish aquarium to a refrigerator turned on its side.

In these controlled experiments, the chemicals are converted into non-toxic components in a matter of weeks. In the field, however, Schwartz said it could take many years to rid an area of solvents at a given site.

"Some sites have a higher volume of solvents than other sites," he said. "But most sites have two things in common – a pure source of the solvent, usually found near the dump site, and plumes, where flowing water has dissolved some of the original chemical and carried it through underground aquifers."

These toxic plumes can extend for miles. Health effects can be severe, with clusters of leukemia cases occasionally developing as people drink contaminated water, Schwartz said.

The researchers believe that chunks containing potassium permanganate could stop plumes in their tracks and, as the potassium permanganate slowly dissolves, mixes with the solvents and eventually obliterates the plumes. The scientists’ next step is to test time-released potassium permanganate chunks in the field.

"Theoretically, these chunks could be made in whatever size is appropriate for the site that needs cleaned," Schwartz said. "We could put the chunks into pre-existing wells, or drill holes into the ground below the water table, insert the chunks and then cover them up. Ideally, we could leave the site alone for a year or two and eventually replace the chunks if necessary."

Potassium permanganate essentially eats away at TCE and PCE, turning these solvents into harmless minerals, water and carbon dioxide.

It’s also cheap and plentiful.

"Potassium permanganate is a much cheaper and much more cost effective way of managing and getting rid of solvents," Li said. "Time-released potassium permanganate could literally save hundreds of thousands, if not millions, of dollars in waste clean-up and management fees."

Current waste treatment methods include pumping tainted water out of the ground and treating it at the surface.

"This requires a constant source of electricity and continuous monitoring, and there’s always the chance that the system could break down," Schwartz said.

With potassium permanganate, there’s little chance that any would be left in the water supply once these reactions happen, Schwartz said.

"Potassium permanganate isn’t as serious a contaminant as a solvent, but you wouldn’t want to drink it," he said. "It also gets oxidized when it reacts with the solvents, and breaks down into harmless by-products."


Support for this research came from the U.S. Department of Energy and the Department of Interior.

Contact: Frank Schwartz, (614) 292 6196; frank@geology.ohio-state.edu. David Li, (614) 292-6193; li@geology.ohio-state.edu.

Written by Holly Wagner, (614) 292-8310; Wagner.235@osu.edu

Holly Wagner | EurekAlert!
Further information:
http://www.acs.ohio-state.edu/units/research/

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>