Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL develops mercury-absorbing pollution solution

01.04.2004


Scientists at the Department of Energy’s Pacific Northwest National Laboratory have developed a novel material that can remove mercury and other toxic substances from coal-burning power-plant waste water.



Mercury pollution is widely recognized as a growing risk to both the environment and public health. It is estimated that coal-burning power plants contribute about 48 tons of mercury to the United States environment each year. The Centers for Disease Control and Prevention estimate that one in eight women have mercury concentrations in their body’s that exceed safety limits.

The Environmental Protection Agency is currently reconsidering proposed rules on the release of mercury from coal-burning power plant effluents and may impose greater restrictions. Mercury found in liquid effluents comes from water-based processes the facilities use to scrub, capture and collect the toxic material.


PNNL’s synthetic material features a nanoporous ceramic substrate with a specifically tailored pore size and a very high surface area. The surface area of one teaspoon of this substance is equivalent to that of a football field. "This substance has proven to be an effective and voracious tool for absorbing mercury," said Shas Mattigod, lead chemist and PNNL project manager. Pore sizes can be tailored for specific tasks.

The material relies on technology previously developed at PNNL– self-assembled monolayers on mesoporous support, or SAMMS. SAMMS integrates a nanoporous silica-based substrate with an innovative method for attaching monolayers, or single layers of densely packed molecules, that can be designed to attract mercury or other toxic substances.

In recent tests at PNNL, a customized version of SAMMS with an affinity for mercury, referred to as thiol-SAMMS, was developed. According to Mattigod, test results revealed mercury-absorbing capabilities that surpassed the developers’ expectations. After three successive treatments, 99.9 percent of the mercury in the simulated waste water was captured reducing levels from 145.8 parts per million to 0.04 parts per million. This is below the EPA’s discharge limit of 0.2 parts per million.

The mercury-laden SAMMS also passed Washington State’s Dangerous Waste regulatory limit of 0.2 parts per million allowing for safe disposal of the test solution directly to the sewer. Tests have shown that the mercury-laden SAMMS also passed EPA requirements for land disposal. "We expect this technology will result in huge savings to users who are faced with costly disposal of mercury in the waste stream."

Mattigod adds that SAMMS technology can be easily adapted to target other toxins such as lead, chromium and radionuclides.


Business and public inquiries on this and other PNNL research and technologies should be directed to 1-888-375-PNNL or inquiry@pnl.gov.

PNNL (www.pnl.gov) is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 3,800, has a $600 million annual budget, and has been managed by Ohio-based Battelle since the lab’s inception in 1965.

Note: Shas V. Mattigod will present his findings at the 227th American Chemical Society national meeting in Anaheim, CA, on Wednesday, March 31, at 5:00 a.m. EST, during the symposium entitled "Mercury Measurement, Transformations, Control, and Related Issues in Power Systems" in the Gold Key II room at the Marriott.

Geoff Harvey | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>