Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL develops mercury-absorbing pollution solution

01.04.2004


Scientists at the Department of Energy’s Pacific Northwest National Laboratory have developed a novel material that can remove mercury and other toxic substances from coal-burning power-plant waste water.



Mercury pollution is widely recognized as a growing risk to both the environment and public health. It is estimated that coal-burning power plants contribute about 48 tons of mercury to the United States environment each year. The Centers for Disease Control and Prevention estimate that one in eight women have mercury concentrations in their body’s that exceed safety limits.

The Environmental Protection Agency is currently reconsidering proposed rules on the release of mercury from coal-burning power plant effluents and may impose greater restrictions. Mercury found in liquid effluents comes from water-based processes the facilities use to scrub, capture and collect the toxic material.


PNNL’s synthetic material features a nanoporous ceramic substrate with a specifically tailored pore size and a very high surface area. The surface area of one teaspoon of this substance is equivalent to that of a football field. "This substance has proven to be an effective and voracious tool for absorbing mercury," said Shas Mattigod, lead chemist and PNNL project manager. Pore sizes can be tailored for specific tasks.

The material relies on technology previously developed at PNNL– self-assembled monolayers on mesoporous support, or SAMMS. SAMMS integrates a nanoporous silica-based substrate with an innovative method for attaching monolayers, or single layers of densely packed molecules, that can be designed to attract mercury or other toxic substances.

In recent tests at PNNL, a customized version of SAMMS with an affinity for mercury, referred to as thiol-SAMMS, was developed. According to Mattigod, test results revealed mercury-absorbing capabilities that surpassed the developers’ expectations. After three successive treatments, 99.9 percent of the mercury in the simulated waste water was captured reducing levels from 145.8 parts per million to 0.04 parts per million. This is below the EPA’s discharge limit of 0.2 parts per million.

The mercury-laden SAMMS also passed Washington State’s Dangerous Waste regulatory limit of 0.2 parts per million allowing for safe disposal of the test solution directly to the sewer. Tests have shown that the mercury-laden SAMMS also passed EPA requirements for land disposal. "We expect this technology will result in huge savings to users who are faced with costly disposal of mercury in the waste stream."

Mattigod adds that SAMMS technology can be easily adapted to target other toxins such as lead, chromium and radionuclides.


Business and public inquiries on this and other PNNL research and technologies should be directed to 1-888-375-PNNL or inquiry@pnl.gov.

PNNL (www.pnl.gov) is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 3,800, has a $600 million annual budget, and has been managed by Ohio-based Battelle since the lab’s inception in 1965.

Note: Shas V. Mattigod will present his findings at the 227th American Chemical Society national meeting in Anaheim, CA, on Wednesday, March 31, at 5:00 a.m. EST, during the symposium entitled "Mercury Measurement, Transformations, Control, and Related Issues in Power Systems" in the Gold Key II room at the Marriott.

Geoff Harvey | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>