Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL develops mercury-absorbing pollution solution

01.04.2004


Scientists at the Department of Energy’s Pacific Northwest National Laboratory have developed a novel material that can remove mercury and other toxic substances from coal-burning power-plant waste water.



Mercury pollution is widely recognized as a growing risk to both the environment and public health. It is estimated that coal-burning power plants contribute about 48 tons of mercury to the United States environment each year. The Centers for Disease Control and Prevention estimate that one in eight women have mercury concentrations in their body’s that exceed safety limits.

The Environmental Protection Agency is currently reconsidering proposed rules on the release of mercury from coal-burning power plant effluents and may impose greater restrictions. Mercury found in liquid effluents comes from water-based processes the facilities use to scrub, capture and collect the toxic material.


PNNL’s synthetic material features a nanoporous ceramic substrate with a specifically tailored pore size and a very high surface area. The surface area of one teaspoon of this substance is equivalent to that of a football field. "This substance has proven to be an effective and voracious tool for absorbing mercury," said Shas Mattigod, lead chemist and PNNL project manager. Pore sizes can be tailored for specific tasks.

The material relies on technology previously developed at PNNL– self-assembled monolayers on mesoporous support, or SAMMS. SAMMS integrates a nanoporous silica-based substrate with an innovative method for attaching monolayers, or single layers of densely packed molecules, that can be designed to attract mercury or other toxic substances.

In recent tests at PNNL, a customized version of SAMMS with an affinity for mercury, referred to as thiol-SAMMS, was developed. According to Mattigod, test results revealed mercury-absorbing capabilities that surpassed the developers’ expectations. After three successive treatments, 99.9 percent of the mercury in the simulated waste water was captured reducing levels from 145.8 parts per million to 0.04 parts per million. This is below the EPA’s discharge limit of 0.2 parts per million.

The mercury-laden SAMMS also passed Washington State’s Dangerous Waste regulatory limit of 0.2 parts per million allowing for safe disposal of the test solution directly to the sewer. Tests have shown that the mercury-laden SAMMS also passed EPA requirements for land disposal. "We expect this technology will result in huge savings to users who are faced with costly disposal of mercury in the waste stream."

Mattigod adds that SAMMS technology can be easily adapted to target other toxins such as lead, chromium and radionuclides.


Business and public inquiries on this and other PNNL research and technologies should be directed to 1-888-375-PNNL or inquiry@pnl.gov.

PNNL (www.pnl.gov) is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 3,800, has a $600 million annual budget, and has been managed by Ohio-based Battelle since the lab’s inception in 1965.

Note: Shas V. Mattigod will present his findings at the 227th American Chemical Society national meeting in Anaheim, CA, on Wednesday, March 31, at 5:00 a.m. EST, during the symposium entitled "Mercury Measurement, Transformations, Control, and Related Issues in Power Systems" in the Gold Key II room at the Marriott.

Geoff Harvey | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>