Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue scientists: Genetically modified fish could damage ecology

24.02.2004


The genetic modifications that improve animals for human consumption also could doom populations if released into the wild, according to a Purdue University research team.



Biologist Rick Howard and his colleagues have discovered a paradox that crops up when new genes are deliberately inserted into a fish’s chromosomes to make the animal grow larger. While the genetically modified fish will be bigger and have more success at attracting mates, they may also produce offspring that are less likely to survive to adulthood. If this occurs, as generations pass, a population could dwindle in size and, potentially, disappear entirely.

"Ours is the first demonstration that a genetically modified organism has a reproductive advantage over its natural counterpart," said Howard, a professor of biological sciences in Purdue’s School of Science. "Though altering animals’ genes can be good for humans in the short run, it may prove catastrophic for nature in the long run if not done with care. And we don’t know just what kind of care is necessary yet, or how much."


This research, which Howard conducted with William Muir of the animal sciences department and Andrew DeWoody of the forestry and natural resources department, appears in this week’s (Feb. 17) online issue of the journal Proceedings of the National Academy of Sciences. Howard and Muir published a related article in the same journal in December 1999 that showed larger animals had a mating advantage, but their previous article did not relate mating advantage to genetic modification (see below URL for related news release).

The most common question posed about genetically modified organisms – GMOs for short, and also called transgenics – is whether they are safe for people to eat. When GMOs were first made commercially available in 1996, many food crops, such as corn and soybeans, were altered to produce substantially more yield than they do in nature. The debate on GMOs in supermarkets has not yet been resolved, and Howard said it could be drawing attention from an equally important issue: whether GMOs are safe for the planet.

"With all the concern over whether transgenic food is safe for humans, the environment has been more or less left out of the picture," Howard said. "Plenty of laboratories are studying whether GMOs are safe for human consumption, but to my knowledge, ours is the only one that looks at whether they will be safe for the Earth."

As a step toward resolving this issue, Howard and his colleagues set out to examine the risk transgenic fish might pose to natural-bred populations. They chose to examine the Japanese medaka, a small fish that breeds daily, because it would reproduce often enough for trends to emerge relatively quickly.

"We took several tanks and put a female into each one with two males – one natural, and one transgenic," Howard said. "The transgenic males were 83 percent heavier than the natural-bred males, so it was easy to distinguish which male was mating with the female."

Howard found that the larger transgenic males mated three times for every time the natural-bred males did – not surprising, considering the premium that female medakas place on male size. But though the transgenic males mated more often, fewer of their young survived to adulthood.

"What surprised us was how fast a GMO mating advantage could cause a transgene to spread in a population," Howard said. "Additionally, we were intrigued at the outcome predicted if this advantage was combined with the disadvantage of young with reduced survival ability."

Howard observed that for every 100 offspring sired by a natural male that survived to adulthood, only 70 of the young produced by a transgenic male survived.

"Putting both of these things together, a population invaded by a few genetically modified individuals would become more and more transgenic, and as it did the population would get smaller and smaller," he said. "We call this the ‘Trojan gene effect.’"

Over time, continued Howard, this effect could continue to multiply itself over generations, eventually decimating a population.

"Imagine a pie, and you eat 30 percent of it every day," he said. "Half of it is gone in two days, and within a week less than one-tenth of it remains. It is conceivable that a similar effect could occur among fish populations if GMOs with ‘Trojan genes’ escape into the wild."

Though the report’s conclusions are sobering, Howard cautions that the group’s research is based on computer models as well as observation of actual fish mating behavior – behavior that took place within a controlled laboratory setting rather than in nature, where other factors could influence the outcome. Consequently, these ideas should not be taken as gospel under all circumstances.

"We were aiming to detect the potential risk a GMO might pose to the environment," he said. "The protocols our group developed with this report could be used as a tool for agencies and food producers for that purpose."

This research has been funded in part by the U.S. Department of Agriculture.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu
Source: Rick Howard, (765) 494-8136, rhoward@bilbo.bio.purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040223.Howard.transgenic.html

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>