Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are cities changing local and global climates?

15.12.2003


Satellite Images of Houston Metro Area

These images show the Houston metropolitan area, where buildings, roads and other built surfaces create urban heat islands that can affect local rain patterns. The images were taken by ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), an imaging instrument that is flying on Terra, a satellite launched in December 1999 as part of NASA’s Earth Observing System (EOS). Credit: NASA/J


Higher Rainfall Rates Downwind of Texas Cities

This image shows areas where urban heat islands influenced higher rainfall rates (in blue) downwind of major cities connected by Interstate 35, known as the I-35 corridor in Texas. The winds that carried clouds and rainfall downwind (in this case, south and east of urban areas) occurred roughly 3.0 kilometers (1.9 miles) above the surface. Rainfall was measured by the precipitation radar instrument on NASA’s Tropical Rainfall Measuring Mission (TRMM) satellite. The higher rainfall rates depicted here were derived from measurements of mean monthly rainfall during the warm seasons (May through September) from 1998 through 2000. Credit: Jim Williams, Scientific Visualization Studio, NASA/Goddard Space Flight Center


New evidence from satellites, models, and ground observations reveal urban areas, with all their asphalt, buildings, and aerosols, are impacting local and possibly global climate processes. This is according to some of the world’s top scientists convening in a special session at the Fall Meeting of the American Geophysical Union in San Francisco.

To study urban impact on local rainfall, Dr. J. Marshall Shepherd of NASA’s Goddard Space Flight Center, Greenbelt, Md., and Steve Burian of the University of Utah, Salt Lake City, used the world’s first space-based rain radar, aboard the Tropical Rainfall Measuring Mission (TRMM) satellite, and dense rain gauge networks on land to determine there are higher rainfall rates during the summer months downwind of large cities like Houston and Atlanta. Burian and Shepherd offer new evidence that rainfall patterns and daily precipitation trends have changed in regions downwind of Houston from a period of pre-urban growth, 1940 to 1958, to a post-urban growth period, 1984 to 1999.

Cities tend to be one to 10 degrees Fahrenheit (0.56 to 5.6 degrees Celsius) warmer than surrounding suburbs and rural areas. Warming from urban heat islands, the varied heights of urban structures that alter winds, and interactions with sea breezes are believed to be the primary causes for the findings in a coastal city like Houston.



In related work, Dr. Daniel Rosenfeld, an atmospheric scientist at Hebrew University, Jerusalem, reveals the increased amount of aerosols, tiny air particles, added by human activity to those naturally occurring also alter local rainfall rates around cities. Rosenfeld suggests the particles provide many surfaces upon which water can collect, preventing droplets from condensing into larger drops and slowing conversion of cloud water into precipitation. In summer, rain and thunder increases downwind of big cities, as rising air from urban heat islands combines with ’delayed’ rainfall resulting from the presence of aerosols, creating bigger clouds and heavier rain.

To help scientists like Shepherd and Rosenfeld improve understanding of links between city landscapes and climate processes like rainfall, NASA’s suite of Earth observing satellites provides information about the land cover/land use properties that initiate the urban effects. The satellites also track the aerosols, clouds, water vapor, and temperature that describe atmospheric conditions in urban environments. Their measurements allow scientists to make end-to-end studies of urban impacts on the climate system practically anywhere on Earth.

"The space-borne instruments on Terra, Aqua, TRMM, and Landsat provide a wealth of new observations of aerosol particles near and downwind of cities, the cloud optical properties, and surface reflectance characteristics that can help us understand the effects that urban environments have on our atmosphere and precipitation patterns," said Dr. Michael King, NASA Earth Observing System Senior Project Scientist. "Aura, to be launched in 2004, will add even more data," he said.

With growing evidence of the effects of urbanization on climate, climate modelers, like Georgia Institute of Technology’s Dr. Robert Dickinson, hope to account for the cumulative effects of urban areas on regional and global climate models. For example, since asphalt has such a large effect on local heat transfer, water run-off, and how winds behave, characterizing asphalt cover is probably the biggest urban effect to be factored into global models.

NASA’s Earth Science Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather and natural hazards using the unique vantage point of space.

Shepherd, King, Rosenfeld, and Dickinson will present their findings during a press conference on Thursday, December 11, 2003, at 3 p.m., PST in Room 2012, Moscone West, at the 2003 Fall Meeting of the American Geophysical Union in San Francisco.

They also will convene a special session, organized by Shepherd and Dr. Menglin Jin of the University of Maryland, detailing these results on Human-Induced Climate Variations Linked to Urbanization: From Observations to Modeling, sessions U51A and U51C, starting on Friday morning, December 12, at 2:00 p.m. PST at MCC 3001-3003. B-roll of video is available on this topic, by calling Wade Sisler of NASA-TV at 301/286-6256.

Krishna Ramanujan | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2003/1211urban.html

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>