Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are cities changing local and global climates?

15.12.2003


Satellite Images of Houston Metro Area

These images show the Houston metropolitan area, where buildings, roads and other built surfaces create urban heat islands that can affect local rain patterns. The images were taken by ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), an imaging instrument that is flying on Terra, a satellite launched in December 1999 as part of NASA’s Earth Observing System (EOS). Credit: NASA/J


Higher Rainfall Rates Downwind of Texas Cities

This image shows areas where urban heat islands influenced higher rainfall rates (in blue) downwind of major cities connected by Interstate 35, known as the I-35 corridor in Texas. The winds that carried clouds and rainfall downwind (in this case, south and east of urban areas) occurred roughly 3.0 kilometers (1.9 miles) above the surface. Rainfall was measured by the precipitation radar instrument on NASA’s Tropical Rainfall Measuring Mission (TRMM) satellite. The higher rainfall rates depicted here were derived from measurements of mean monthly rainfall during the warm seasons (May through September) from 1998 through 2000. Credit: Jim Williams, Scientific Visualization Studio, NASA/Goddard Space Flight Center


New evidence from satellites, models, and ground observations reveal urban areas, with all their asphalt, buildings, and aerosols, are impacting local and possibly global climate processes. This is according to some of the world’s top scientists convening in a special session at the Fall Meeting of the American Geophysical Union in San Francisco.

To study urban impact on local rainfall, Dr. J. Marshall Shepherd of NASA’s Goddard Space Flight Center, Greenbelt, Md., and Steve Burian of the University of Utah, Salt Lake City, used the world’s first space-based rain radar, aboard the Tropical Rainfall Measuring Mission (TRMM) satellite, and dense rain gauge networks on land to determine there are higher rainfall rates during the summer months downwind of large cities like Houston and Atlanta. Burian and Shepherd offer new evidence that rainfall patterns and daily precipitation trends have changed in regions downwind of Houston from a period of pre-urban growth, 1940 to 1958, to a post-urban growth period, 1984 to 1999.

Cities tend to be one to 10 degrees Fahrenheit (0.56 to 5.6 degrees Celsius) warmer than surrounding suburbs and rural areas. Warming from urban heat islands, the varied heights of urban structures that alter winds, and interactions with sea breezes are believed to be the primary causes for the findings in a coastal city like Houston.



In related work, Dr. Daniel Rosenfeld, an atmospheric scientist at Hebrew University, Jerusalem, reveals the increased amount of aerosols, tiny air particles, added by human activity to those naturally occurring also alter local rainfall rates around cities. Rosenfeld suggests the particles provide many surfaces upon which water can collect, preventing droplets from condensing into larger drops and slowing conversion of cloud water into precipitation. In summer, rain and thunder increases downwind of big cities, as rising air from urban heat islands combines with ’delayed’ rainfall resulting from the presence of aerosols, creating bigger clouds and heavier rain.

To help scientists like Shepherd and Rosenfeld improve understanding of links between city landscapes and climate processes like rainfall, NASA’s suite of Earth observing satellites provides information about the land cover/land use properties that initiate the urban effects. The satellites also track the aerosols, clouds, water vapor, and temperature that describe atmospheric conditions in urban environments. Their measurements allow scientists to make end-to-end studies of urban impacts on the climate system practically anywhere on Earth.

"The space-borne instruments on Terra, Aqua, TRMM, and Landsat provide a wealth of new observations of aerosol particles near and downwind of cities, the cloud optical properties, and surface reflectance characteristics that can help us understand the effects that urban environments have on our atmosphere and precipitation patterns," said Dr. Michael King, NASA Earth Observing System Senior Project Scientist. "Aura, to be launched in 2004, will add even more data," he said.

With growing evidence of the effects of urbanization on climate, climate modelers, like Georgia Institute of Technology’s Dr. Robert Dickinson, hope to account for the cumulative effects of urban areas on regional and global climate models. For example, since asphalt has such a large effect on local heat transfer, water run-off, and how winds behave, characterizing asphalt cover is probably the biggest urban effect to be factored into global models.

NASA’s Earth Science Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather and natural hazards using the unique vantage point of space.

Shepherd, King, Rosenfeld, and Dickinson will present their findings during a press conference on Thursday, December 11, 2003, at 3 p.m., PST in Room 2012, Moscone West, at the 2003 Fall Meeting of the American Geophysical Union in San Francisco.

They also will convene a special session, organized by Shepherd and Dr. Menglin Jin of the University of Maryland, detailing these results on Human-Induced Climate Variations Linked to Urbanization: From Observations to Modeling, sessions U51A and U51C, starting on Friday morning, December 12, at 2:00 p.m. PST at MCC 3001-3003. B-roll of video is available on this topic, by calling Wade Sisler of NASA-TV at 301/286-6256.

Krishna Ramanujan | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2003/1211urban.html

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>