Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wolves are rebalancing yellowstone ecosystem


The reintroduction of wolves into Yellowstone National Park may be the key to maintaining groves of cottonwood trees that were well on their way to localized extinction, and is working to rebalance a stream ecosystem in the park for the first time in seven decades, Oregon State University scientists say in two new studies.

The data show a clear and remarkable linkage between the presence of wolves and the health of an entire streamside ecosystem, including two species of cottonwoods and the myriad of roles they play in erosion control, stream health, and nurturing diverse plant and animal life.

The findings of these studies were recently published in Ecological Applications, a journal of the Ecological Society of America, and the journal Forest Ecology and Management.

"In one portion of the elk’s winter range along the Lamar River of Yellowstone National Park, we found that there were thousands of small cottonwood seedlings," said Robert Beschta, professor emeritus in the College of Forestry at OSU and an expert on streams and riparian systems. "There should also have been hundreds of young trees, but there were none. Long-term elk browsing had been preventing any seedlings from getting taller."

That pattern was common throughout the study area - lots of seedlings in combination with large cottonwood trees generally more than 70 years old, but little or nothing in between.

Young cottonwoods, willows, and other streamside woody species are a preferred food for browsing elk during the harsh winters in northern Yellowstone, when much of the other forage is buried under snow. But when packs of wolves historically roamed the area, food was not the only consideration for elk, which had to be very careful and apparently avoided browsing in high-risk areas with low visibility or escape barriers.

Wolves were systematically killed in the Yellowstone region and many other areas of the West beginning in the late 1800s. A concentrated effort between 1914 and 1926 finished the job - the last known wolf pack disappeared in 1926.

"I considered a variety of potential reasons that might explain the historical decline of cottonwoods that began in the 1920s and have continued up to the last couple of years," said Beschta. "I looked at climate change, lack of floods, fire suppression, natural stand dynamics, and numbers of elk. But none of those factors really explained the problem. "Ultimately, it became clear that wolves were the answer."

While elk populations fluctuated over the decades when wolves were absent, browsing behavior appears to represent an important factor related to streamside impacts. With no fear of wolves, the elk could graze anywhere they liked and for decades have been able to kill, by browsing, nearly all the young cottonwoods. Other streamside species such as willows and berry-producing shrubs also suffered.

That in turn began to play havoc with an entire streamside ecosystem and associated wildlife, including birds, insects, fish and others. Trees and shrubs were lost that could have helped control stream erosion. Food webs broke down.

"Before the wolves came back, it was pretty clear that in some areas we were heading towards an outright extinction of cottonwoods," Beschta said.

Now, with the recent reintroduction of wolves back into Yellowstone in 1995, streamside shrubs and cottonwoods within the Lamar Valley are beginning to become more prevalent and taller, and were the focus of a second study in the same area. That study outlines how the fear of attack by wolves apparently prevents browsing elk from eating young cottonwood and willows in some streamside zones.

With the renewed presence of wolves, young cottonwoods and willows have been growing taller each year over the last four years on "high-risk" sites, where elk apparently feel vulnerable due to terrain or other conditions that might prevent escape. In contrast, on "low-risk" sites, they are still being browsed by elk and show little increase in height.

"In one case where a gully formed an escape barrier for elk, the tree height went up proportionally as the gully deepened and formed an increasing barrier to escape," said William Ripple, a professor with the College of Forestry at OSU. "Where the fear factor of wolves is high, the young trees and willows are doing much better and growing taller."

Traditionally, "keystone" predators such as wolves were known to influence the population of other animals that they preyed on directly, such as elk or antelope. What researchers are now coming to better understand is the "trophic effect," or cascade of changes that can take place in an ecosystem when an important part is removed, Ripple said.

The comparatively pristine conditions of a national park allowed this type of research to make "cause and effect" studies more feasible, the scientists point out.

"The removal of wolves for 70 years - and then their return - actually set the stage for a scientific experiment with fairly compelling results," Beschta said.

In a larger context, the studies also raise valid questions about other complex and poorly understood interactions between plants, animals, and wildlife in disturbed ecosystems across much of the American West, and perhaps elsewhere in the world, the scientists say. In some areas of the West, the disappearance of up to 90 percent of the aspen trees has been documented - another species of plant that is also highly vulnerable to animal browsing when it is young.

"The last period when aspen trees in Yellowstone escaped the effects of elk browsing to generate trees into the forest overstory was the 1920s," Ripple said, "which is also when wolves were removed from the park."

But in at least one place - America’s first national park - there is now cause for hope. While it is too early to confirm the widespread recovery of cottonwoods and willows, the reintroduction of wolves appears to have put a stop to major declines in the survival of these plants, the researchers found.

"One point that should not be missed is this is actually great news for the potential recovery of cottonwood trees and mature willows in Yellowstone National Park," Ripple said. "We now have a pretty good idea why they were in decline and the return of wolves should help pave the way for their recovery.

"Even though it may take a very long time, for a change it looks like we’re headed in the right direction."

By David Stauth, 541-737-0787

SOURCES: Robert Beschta, 541-737-4292
William Ripple, 541-737-3056

David Stauth | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>