Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wolves are rebalancing yellowstone ecosystem

29.10.2003


The reintroduction of wolves into Yellowstone National Park may be the key to maintaining groves of cottonwood trees that were well on their way to localized extinction, and is working to rebalance a stream ecosystem in the park for the first time in seven decades, Oregon State University scientists say in two new studies.



The data show a clear and remarkable linkage between the presence of wolves and the health of an entire streamside ecosystem, including two species of cottonwoods and the myriad of roles they play in erosion control, stream health, and nurturing diverse plant and animal life.

The findings of these studies were recently published in Ecological Applications, a journal of the Ecological Society of America, and the journal Forest Ecology and Management.


"In one portion of the elk’s winter range along the Lamar River of Yellowstone National Park, we found that there were thousands of small cottonwood seedlings," said Robert Beschta, professor emeritus in the College of Forestry at OSU and an expert on streams and riparian systems. "There should also have been hundreds of young trees, but there were none. Long-term elk browsing had been preventing any seedlings from getting taller."

That pattern was common throughout the study area - lots of seedlings in combination with large cottonwood trees generally more than 70 years old, but little or nothing in between.

Young cottonwoods, willows, and other streamside woody species are a preferred food for browsing elk during the harsh winters in northern Yellowstone, when much of the other forage is buried under snow. But when packs of wolves historically roamed the area, food was not the only consideration for elk, which had to be very careful and apparently avoided browsing in high-risk areas with low visibility or escape barriers.

Wolves were systematically killed in the Yellowstone region and many other areas of the West beginning in the late 1800s. A concentrated effort between 1914 and 1926 finished the job - the last known wolf pack disappeared in 1926.

"I considered a variety of potential reasons that might explain the historical decline of cottonwoods that began in the 1920s and have continued up to the last couple of years," said Beschta. "I looked at climate change, lack of floods, fire suppression, natural stand dynamics, and numbers of elk. But none of those factors really explained the problem. "Ultimately, it became clear that wolves were the answer."

While elk populations fluctuated over the decades when wolves were absent, browsing behavior appears to represent an important factor related to streamside impacts. With no fear of wolves, the elk could graze anywhere they liked and for decades have been able to kill, by browsing, nearly all the young cottonwoods. Other streamside species such as willows and berry-producing shrubs also suffered.

That in turn began to play havoc with an entire streamside ecosystem and associated wildlife, including birds, insects, fish and others. Trees and shrubs were lost that could have helped control stream erosion. Food webs broke down.

"Before the wolves came back, it was pretty clear that in some areas we were heading towards an outright extinction of cottonwoods," Beschta said.

Now, with the recent reintroduction of wolves back into Yellowstone in 1995, streamside shrubs and cottonwoods within the Lamar Valley are beginning to become more prevalent and taller, and were the focus of a second study in the same area. That study outlines how the fear of attack by wolves apparently prevents browsing elk from eating young cottonwood and willows in some streamside zones.

With the renewed presence of wolves, young cottonwoods and willows have been growing taller each year over the last four years on "high-risk" sites, where elk apparently feel vulnerable due to terrain or other conditions that might prevent escape. In contrast, on "low-risk" sites, they are still being browsed by elk and show little increase in height.

"In one case where a gully formed an escape barrier for elk, the tree height went up proportionally as the gully deepened and formed an increasing barrier to escape," said William Ripple, a professor with the College of Forestry at OSU. "Where the fear factor of wolves is high, the young trees and willows are doing much better and growing taller."

Traditionally, "keystone" predators such as wolves were known to influence the population of other animals that they preyed on directly, such as elk or antelope. What researchers are now coming to better understand is the "trophic effect," or cascade of changes that can take place in an ecosystem when an important part is removed, Ripple said.

The comparatively pristine conditions of a national park allowed this type of research to make "cause and effect" studies more feasible, the scientists point out.

"The removal of wolves for 70 years - and then their return - actually set the stage for a scientific experiment with fairly compelling results," Beschta said.

In a larger context, the studies also raise valid questions about other complex and poorly understood interactions between plants, animals, and wildlife in disturbed ecosystems across much of the American West, and perhaps elsewhere in the world, the scientists say. In some areas of the West, the disappearance of up to 90 percent of the aspen trees has been documented - another species of plant that is also highly vulnerable to animal browsing when it is young.

"The last period when aspen trees in Yellowstone escaped the effects of elk browsing to generate trees into the forest overstory was the 1920s," Ripple said, "which is also when wolves were removed from the park."

But in at least one place - America’s first national park - there is now cause for hope. While it is too early to confirm the widespread recovery of cottonwoods and willows, the reintroduction of wolves appears to have put a stop to major declines in the survival of these plants, the researchers found.

"One point that should not be missed is this is actually great news for the potential recovery of cottonwood trees and mature willows in Yellowstone National Park," Ripple said. "We now have a pretty good idea why they were in decline and the return of wolves should help pave the way for their recovery.

"Even though it may take a very long time, for a change it looks like we’re headed in the right direction."

By David Stauth, 541-737-0787



SOURCES: Robert Beschta, 541-737-4292
William Ripple, 541-737-3056

David Stauth | EurekAlert!
Further information:
http://www.orst.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>