Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fe-TAML(R) activators developed at Carnegie Mellon help cleanup paper and wood pulp manufacturing


Potent, environmentally friendly catalysts called Fe-TAML® activators, developed by scientists at Carnegie Mellon University, can destroy colored pollutants and toxic compounds resulting from paper and wood pulp processing.

The results of extensive field trials conducted by Carnegie Mellon University, Forest Research of New Zealand and the University of Auckland are being presented by Dr. L. James Wright of the University of Auckland on Wed., Sept. 10, in New York City at the 226th annual meeting of the American Chemical Society (paper 177, "Activation of hydrogen peroxide with a TAML® catalyst for wastewater remediation in the pulp and paper industry," Industrial & Engineering Chemistry Division).

"Right now, we can use Fe-TAMLs with hydrogen peroxide to clean up the unsightly color from chlorine-based bleaching processes used by mills to make paper and the chlorinated byproducts of those processes, which are considered a potential health hazard," said Terry Collins, the Thomas Lord Professor of Chemistry at Carnegie Mellon and the chief researcher on the Fe-TAML project. Collins describes the results of the decolorization as going from ’coffee’ to ’lemonade.’

Fe-TAMLs (TAML stands for tetra-amido macrocyclic ligand) are synthetic catalysts made with elements found in nature.

While the current study shows that the Fe-TAML activators are extremely promising in cleanup efforts, their real promise may be in replacing altogether chlorine-based bleaching processes currently in place. If accomplished, this substitution would virtually avert the formation of chlorinated byproducts altogether and greatly reduce or eliminate color production associated with paper processing, according to Collins.

The paper and wood pulp manufacturing process produces approximately 100 million tons of bleached pulp each year for use in the manufacture of a variety of cellulose-based products including white paper. In standard mill paper processing, a dark, coffee-colored effluent is produced, called ’color’ in the industry because of its dark hue, which enters streams and rivers. This effluent often contains a dark-colored oxidized form of a polymer derived from lignin, which is a polymer surrounding the cellulose in wood, as well as chlorinated byproducts. The effluent inhibits light from penetrating the water. Reduced light, in turn, can reduce plant growth and affect organisms that depend on those plants for food.

While Fe-TAML activators are not yet optimized to the point where they could replace chlorinated bleaching processes completely, they could be used now by paper and wood pulp mills to significantly reduce color so that brown, opaque wastewater becomes yellow and translucent, according to Collins. The decolorization process also reduces chlorinated byproducts resulting from some wood bleaching processes by nearly 30 percent.

Hydrogen peroxide catalyzed by Fe-TAML activators eventually should provide a much more efficient bleaching process than one using chlorinated compounds, according to Collins, because only small quantities of the Fe-TAML activators and hydrogen peroxide are needed to be highly effective. Furthermore, according to Collins, Fe-TAMLs are likely to be relatively inexpensive catalysts when produced in large amounts.

The field trials on color removal conducted in 2003 were funded by New Zealand resources and by the Eden Hall Foundation in Pittsburgh, Pennsylvania.

Fe-TAML activators originated at Carnegie Mellon’s Institute for Green Oxidation Chemistry under the leadership of Collins, who is a strong proponent of green chemistry to create environmentally friendly, sustainable technologies. Fe-TAML activators show enormous potential to provide clean, safe alternatives to existing industrial practices. They also provide ways to remediate other pressing problems that currently lack solutions.

As part of this September’s American Chemical Society meeting symposium, "Green Chemistry: Multidisciplinary Science and Engineering Applied to Global Environmental Issues," the Collins group will present results of Fe-TAML activators’ effectiveness in killing a simulant of a biological warfare agent, reducing fuel pollutants, cleaning wastewater from textile manufacturing and detoxifying pesticides. At the symposium, the Collins group also will highlight how Fe-TAML activators can work with oxygen rather than hydrogen peroxide, thereby extending tremendously the range of potential applications of these catalysts.

Lauren Ward | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>