Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fe-TAML(R) activators developed at Carnegie Mellon help cleanup paper and wood pulp manufacturing

11.09.2003


Potent, environmentally friendly catalysts called Fe-TAML® activators, developed by scientists at Carnegie Mellon University, can destroy colored pollutants and toxic compounds resulting from paper and wood pulp processing.



The results of extensive field trials conducted by Carnegie Mellon University, Forest Research of New Zealand and the University of Auckland are being presented by Dr. L. James Wright of the University of Auckland on Wed., Sept. 10, in New York City at the 226th annual meeting of the American Chemical Society (paper 177, "Activation of hydrogen peroxide with a TAML® catalyst for wastewater remediation in the pulp and paper industry," Industrial & Engineering Chemistry Division).

"Right now, we can use Fe-TAMLs with hydrogen peroxide to clean up the unsightly color from chlorine-based bleaching processes used by mills to make paper and the chlorinated byproducts of those processes, which are considered a potential health hazard," said Terry Collins, the Thomas Lord Professor of Chemistry at Carnegie Mellon and the chief researcher on the Fe-TAML project. Collins describes the results of the decolorization as going from ’coffee’ to ’lemonade.’


Fe-TAMLs (TAML stands for tetra-amido macrocyclic ligand) are synthetic catalysts made with elements found in nature.

While the current study shows that the Fe-TAML activators are extremely promising in cleanup efforts, their real promise may be in replacing altogether chlorine-based bleaching processes currently in place. If accomplished, this substitution would virtually avert the formation of chlorinated byproducts altogether and greatly reduce or eliminate color production associated with paper processing, according to Collins.

The paper and wood pulp manufacturing process produces approximately 100 million tons of bleached pulp each year for use in the manufacture of a variety of cellulose-based products including white paper. In standard mill paper processing, a dark, coffee-colored effluent is produced, called ’color’ in the industry because of its dark hue, which enters streams and rivers. This effluent often contains a dark-colored oxidized form of a polymer derived from lignin, which is a polymer surrounding the cellulose in wood, as well as chlorinated byproducts. The effluent inhibits light from penetrating the water. Reduced light, in turn, can reduce plant growth and affect organisms that depend on those plants for food.

While Fe-TAML activators are not yet optimized to the point where they could replace chlorinated bleaching processes completely, they could be used now by paper and wood pulp mills to significantly reduce color so that brown, opaque wastewater becomes yellow and translucent, according to Collins. The decolorization process also reduces chlorinated byproducts resulting from some wood bleaching processes by nearly 30 percent.

Hydrogen peroxide catalyzed by Fe-TAML activators eventually should provide a much more efficient bleaching process than one using chlorinated compounds, according to Collins, because only small quantities of the Fe-TAML activators and hydrogen peroxide are needed to be highly effective. Furthermore, according to Collins, Fe-TAMLs are likely to be relatively inexpensive catalysts when produced in large amounts.

The field trials on color removal conducted in 2003 were funded by New Zealand resources and by the Eden Hall Foundation in Pittsburgh, Pennsylvania.

Fe-TAML activators originated at Carnegie Mellon’s Institute for Green Oxidation Chemistry under the leadership of Collins, who is a strong proponent of green chemistry to create environmentally friendly, sustainable technologies. Fe-TAML activators show enormous potential to provide clean, safe alternatives to existing industrial practices. They also provide ways to remediate other pressing problems that currently lack solutions.

As part of this September’s American Chemical Society meeting symposium, "Green Chemistry: Multidisciplinary Science and Engineering Applied to Global Environmental Issues," the Collins group will present results of Fe-TAML activators’ effectiveness in killing a simulant of a biological warfare agent, reducing fuel pollutants, cleaning wastewater from textile manufacturing and detoxifying pesticides. At the symposium, the Collins group also will highlight how Fe-TAML activators can work with oxygen rather than hydrogen peroxide, thereby extending tremendously the range of potential applications of these catalysts.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>