Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New pollutant cleanup technique puzzles, pleases chemists

10.09.2003


Scientists looking for ways to clean up a common, persistent type of organic pollutant have developed an approach that not only restores the power of a naturally occurring pollution buster but also boosts it to levels of effectiveness that they can’t currently explain.



"It’s safe to say that we don’t fully understand why this approach works so well, but we’ll take it and develop it and figure out the details as we go," Gerald Meyer, professor of chemistry in the Krieger School of Arts and Sciences at The Johns Hopkins University, said with a laugh.

The targets of the new technique, developed by Sherine Obare, a postdoctoral fellow in Meyer’s lab, are organohalides, a class of compounds used in pesticides, pharmaceuticals, and manufacturing. They pose health risks to humans and have been linked to environmental problems like ozone depletion and climate change.


Obare’s new approach combines an extremely thin film of titanium dioxide with a compound found in life known as hemin. After exposure to ultraviolet light, the hemin and titanium dioxide can break up organohalides at surprisingly high rates. Obare and Meyer will present results of tests of the new approach at 6 p.m. on Sept. 8 in the North Pavillion of the Javits Convention Center in New York at the 226th national meeting of the American Chemical Society.

Seventeen of the top 25 organic groundwater contaminants in urban areas are organohalides, according to a 1997 Environmental Protection Agency report. Organohalides are a class of organic compounds that include a halogen, a group of elements comprised of bromine, fluorine, iodine and chlorine. The compounds are very difficult to break down chemically. Some instances of organohalides in the environment today, for example, can be traced back to the dry cleaning industry of the 1920s and 1930s.

Meyer is director of the National Science Foundation-funded Collaborative Research Activities in Environmental Molecular Sciences (CRAEMS) Center at Johns Hopkins, which is dedicated to finding ways to deal with the environmental effects of organohalides. "These compounds play many important and beneficial roles in the chemical and pharmaceutical industries, so they’re not going away soon, and it’s important that we find ways to minimize their environmental effects," he said.

According to Meyer, scientists have known for decades that hemes, a naturally occurring group of compounds that contain iron atoms, can break up organohalides. The most well-known heme is hemoglobin, a compound in red blood cells that carries oxygen.

"There’s a lot of speculation that hemes in proteins are what cells use to defend themselves from organohalides," Meyer explained. "We can buy hemes – we don’t have to extract them from protein or anything – but when you remove them from their naturally occurring environment, you tend to oxidize them."

In their oxidized state, hemes are no longer useful for breaking down organohalides. Hemes can be re-activated using chemical or electrochemical techniques, but Obare wanted to try using a practical, easily available energy source to power the re-activation: sunlight. She decided to try to take advantage of titanium dioxide’s abilities as a photocatalyst, a substance that promotes chemical reactions in other nearby materials when exposed to light.

"I anchored hemin on porous thin films of nanocrystalline titanium dioxide, and when I exposed the system to light, the hemin was activated to a reduced state where it reacted rapidly with organohalides, producing much better results than I expected," Obare explained. "I’ve even been able to recycle and reactivate the thin films for further organohalide degradation."

Meyer noted that there’s still a lot of development work to be done, not the least of which is figuring out exactly how the chemistry of the new system works. But he speculated that scientists might someday be able to insert a similar system in drinking water – down a well, for example – and power the removal of organohalides with sunlight.


THE JOHNS HOPKINS UNIVERSITY
OFFICE OF NEWS AND INFORMATION
3003 N. Charles Street, Suite 100
Baltimore, Maryland 21218-3843
Phone: 410-516-7160; Fax: 410-516-5251
MEDIA CONTACT: Phil Sneiderman
410-516-7160
prs@jhu.edu

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>