Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New pollutant cleanup technique puzzles, pleases chemists

10.09.2003


Scientists looking for ways to clean up a common, persistent type of organic pollutant have developed an approach that not only restores the power of a naturally occurring pollution buster but also boosts it to levels of effectiveness that they can’t currently explain.



"It’s safe to say that we don’t fully understand why this approach works so well, but we’ll take it and develop it and figure out the details as we go," Gerald Meyer, professor of chemistry in the Krieger School of Arts and Sciences at The Johns Hopkins University, said with a laugh.

The targets of the new technique, developed by Sherine Obare, a postdoctoral fellow in Meyer’s lab, are organohalides, a class of compounds used in pesticides, pharmaceuticals, and manufacturing. They pose health risks to humans and have been linked to environmental problems like ozone depletion and climate change.


Obare’s new approach combines an extremely thin film of titanium dioxide with a compound found in life known as hemin. After exposure to ultraviolet light, the hemin and titanium dioxide can break up organohalides at surprisingly high rates. Obare and Meyer will present results of tests of the new approach at 6 p.m. on Sept. 8 in the North Pavillion of the Javits Convention Center in New York at the 226th national meeting of the American Chemical Society.

Seventeen of the top 25 organic groundwater contaminants in urban areas are organohalides, according to a 1997 Environmental Protection Agency report. Organohalides are a class of organic compounds that include a halogen, a group of elements comprised of bromine, fluorine, iodine and chlorine. The compounds are very difficult to break down chemically. Some instances of organohalides in the environment today, for example, can be traced back to the dry cleaning industry of the 1920s and 1930s.

Meyer is director of the National Science Foundation-funded Collaborative Research Activities in Environmental Molecular Sciences (CRAEMS) Center at Johns Hopkins, which is dedicated to finding ways to deal with the environmental effects of organohalides. "These compounds play many important and beneficial roles in the chemical and pharmaceutical industries, so they’re not going away soon, and it’s important that we find ways to minimize their environmental effects," he said.

According to Meyer, scientists have known for decades that hemes, a naturally occurring group of compounds that contain iron atoms, can break up organohalides. The most well-known heme is hemoglobin, a compound in red blood cells that carries oxygen.

"There’s a lot of speculation that hemes in proteins are what cells use to defend themselves from organohalides," Meyer explained. "We can buy hemes – we don’t have to extract them from protein or anything – but when you remove them from their naturally occurring environment, you tend to oxidize them."

In their oxidized state, hemes are no longer useful for breaking down organohalides. Hemes can be re-activated using chemical or electrochemical techniques, but Obare wanted to try using a practical, easily available energy source to power the re-activation: sunlight. She decided to try to take advantage of titanium dioxide’s abilities as a photocatalyst, a substance that promotes chemical reactions in other nearby materials when exposed to light.

"I anchored hemin on porous thin films of nanocrystalline titanium dioxide, and when I exposed the system to light, the hemin was activated to a reduced state where it reacted rapidly with organohalides, producing much better results than I expected," Obare explained. "I’ve even been able to recycle and reactivate the thin films for further organohalide degradation."

Meyer noted that there’s still a lot of development work to be done, not the least of which is figuring out exactly how the chemistry of the new system works. But he speculated that scientists might someday be able to insert a similar system in drinking water – down a well, for example – and power the removal of organohalides with sunlight.


THE JOHNS HOPKINS UNIVERSITY
OFFICE OF NEWS AND INFORMATION
3003 N. Charles Street, Suite 100
Baltimore, Maryland 21218-3843
Phone: 410-516-7160; Fax: 410-516-5251
MEDIA CONTACT: Phil Sneiderman
410-516-7160
prs@jhu.edu

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>