Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Borneo elephants: A high priority for conservation

20.08.2003


A new study settles a long-standing dispute about the genesis of an endangered species. With scant fossil evidence supporting a prehistoric presence, scientists could not say for sure where Borneo’s elephants came from. Did they descend from ancient prototypes of the Pleistocene era or from modern relatives introduced just 300–500 years ago? That question, as Fernando et al. report in an article that will appear in the inaugural issue of PLoS Biology (and currently available online at http://biology.plosjournals.org), is no longer subject to debate.



Applying DNA analysis and dating techniques to investigate the elephants’ evolutionary path, researchers from the United States, India, and Malaysia, led by Don Melnick of the Center for Environmental Research and Conservation at Columbia, demonstrate that Borneo’s elephants are not recent arrivals. They are genetically distinct from other Asian elephants and may have parted ways with their closest Asian cousins when Borneo separated from the mainland, effectively isolating the Borneo elephants some 300,000 years ago.

In the 1950s, Borneo elephants had been classified as a subspecies of Asian elephants (either Indian or Sumatran) based on anatomical differences, such as smaller skull size and tusk variations. This classification was later changed, partly because of the popular view that these animals had descended from imported domesticated elephants. Until now, there was no solid evidence to refute this belief and no reason to prioritize the conservation of Borneo elephants.


Their new status, as revealed by this study, has profound implications for the fate of Borneo’s largest mammals. Wild Asian elephant populations are disappearing as expanding human development disrupts their migration routes, depletes their food sources, and destroys their habitat. Recognizing these elephants as native to Borneo makes their conservation a high priority and gives biologists important clues about how to manage them.


###
Research Article: Fernando P, Vidya TNC, Payne J, Stuewe M, Davison G, et al. (2003). DNA analysis indicates that Asian elephants are native to Borneo and are therefore a high priority for conservation. DOI: 10.1371/journal.pbio.0000006

Download article PDF at: http://www.plos.org/downloads/elephants_plosbiology.pdf

CONTACT:

Prithiviraj Fernando (corresponding author)
Columbia University
Center for Environmental Research and Conservation
1200 Amsterdam Avenue
New York, NY 10027
United States of America
212-854-9488
212-854-8188 (fax)
pf133@columbia.edu

Don Melnick (author)
Columbia University
Dept. of Ecology, Evolution and, Environmental Biology
1012 Schermerhorn Extension
1200 Amsterdam Ave.
New York, NY 10027
United States of America
212-854-8186
212-854-8186 (fax)
djm7@columbia.edu

Craig Moritz (editor)
University of California, Berkeley
Department of Integrative Biology
3060 Valley Life Sciences Building #3140
Berkeley, CA 94720-3140
United States of America
510-643-7711
510-643-6264 (fax)
cmoritz@socrates.berkeley.edu

Barbara Cohen | EurekAlert!
Further information:
http://www.publiclibraryofscience.org/
http://www.plos.org/downloads/elephants_plosbiology.pdf,
http://biology.plosjournals.org

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>