Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

City-grown air pollution is tougher on country trees

10.07.2003


CITY TREES VERSUS COUNTRY COUSINS. Dug up after a growing season in two kinds of air pollution, cottonwood trees show the retardant effects of ozone. From left, five city trees from the Bronx, where nitric-oxide pollution reduced the ozone exposure period; Cornell ecologist Jillian Gregg; and five country trees that grew in a high ozone rural environment in Riverhead, Long Island. Photo provided by Jilian Gregg. Copyright © Cornell University



NOT SO LUCKY. Examining tree growth in New York City, Cornell ecologist Jillian Gregg says low-ozone "footprints" in urban areas occur because high nitric-oxide concentrations scavenge ozone from the urban atmosphere. But rural areas aren’t so "lucky". These same nitric oxide compounds are one of the primary precursors that react to form high ozone concentrations that are blown to rural environments. Once there, nitric oxide is very low in concentration so ozone remains in the atmosphere for a longer period. While individual one-hour peak ozone concentrations are often higher in urban environments, the extended exposure period outside the urban center cause some rural trees to grow only half as fast as their city cousins. Photo provided by Jillian Gregg.Copyright © Cornell University


A tree grows in Brooklyn -- despite big-city air pollutants. Meanwhile, identical trees planted downwind of city pollution grow only half as well -- a surprising finding that ecologists at Cornell University and the Institute of Ecosystem Studies (IES) reported in the current issue of Nature (July 10, 2003). They attribute the effect to an atmospheric-chemistry "footprint" that favors city trees.

"I know this sounds counterintuitive but it’s true. City-grown pollution -- and ozone in particular -- is tougher on country trees," says Jillian W. Gregg, lead author of the Nature cover article, "Urbanization effects on tree growth in the vicinity of New York City." Other authors of the Nature report are Clive G. Jones, an ecologist at the Institute of Ecosystem Studies in Millbrook, N.Y., where some of the field studies were conducted, and Todd E. Dawson, professor of integrative biology at the University of California, Berkeley, and a professor at Cornell when the study began.

Gregg was a joint Cornell/IES graduate student, pursuing a Ph.D. in ecology, when she started planting identical clones of cottonwood trees (also known as poplars, or by the scientific name Populus deltoides ) in and around New York City. Test sites included the New York Botanical Garden and the Hunts Point water works in the Bronx; a Consolidated Edison fuel depot in Astoria, Queens; as well as Long Island’s Brookhaven National Laboratory in Upton; Eisenhower Park in Hempstead; and the Cornell Horticultural Research Laboratory in Riverhead. About 50 miles north of Manhattan, in the Hudson River valley, she also planted cottonwood clones at the Millbrook institute.



One aim of the study was to show the impact on plants of a tough life in the city, where a variety of gaseous, particulate and photochemical pollutants from fossil-fuel combustion bombard plants as they struggle to grow in heavy metal-laden soils. The fast-growing poplars were to serve as a kind of "phytometer" to gauge the net effect of urban and industrial pollutants on urban and rural ecosystems.

For three consecutive growing seasons Gregg returned to the sites to plant cottonwoods, harvesting them to weigh their biomass and to perform other kinds of analyses. She controlled for differences in light, precipitation, season length and soil factors, making air quality the primary factor of concern. The experimental cottonwoods growing in Queens and the Bronx "breathed" the same pollutants as did other plants (and people) in the boroughs. So did cottonwoods along the Hudson and on Long Island.

Unexpectedly, the city trees thrived. As reported in Nature , "…urban plant biomass was double that of rural sites." But in some areas of metropolitan New York City, as well as in other polluted cities, Gregg and her colleagues have found "footprints" of lower-than-expected ozone exposures. As Gregg explains the facts of atmospheric chemistry in the city, "Ozone is what we call a secondary pollutant. So while the primary precursors for ozone are emitted in the city, they must act in the presence of sunlight, over time, before ozone is formed. By then, the air mass has moved to rural environments."

The Big Apple air situation is even more complicated, Gregg notes, because the city is downwind from New Jersey, another densely populated and industrialized region. "A lot of the ozone moving into New York City was formed in the so-called Garden State," the ecologist says. However, the reactions of ozone formation are cyclical, with the presence of one of the primary precursors, nitric oxide (NO) -- which occurs in high concentrations in the urban atmosphere -- destroying ozone once it has formed. As new NO compounds develop, three-atom oxygen is reduced to the more benign, two-atom kind.

Ironically, NO concentrations are very low in most rural areas, so ozone remains in the atmosphere there and plants’ exposure period to the harmful gas is extended. (Although one-hour peak ozone exposures can be high in urban centers, exposure periods last longer in rural environments, resulting in higher cumulative exposures.) Trees and other plants growing within the lower cumulative ozone exposures of the urban-ozone footprints benefit from the NO scavenging reactions that reduce the ozone-exposure period. Trees growing in the purportedly clean rural areas aren’t so lucky.

The study was supported, in part, by the U.S. Environmental Protection Agency, the Edna Bailey Sussman Fund for Environmental Internships, the New York State Heritage Foundation, the Mellon Foundation , Cornell’s Department of Ecology and Systematics, the Institute of Ecosystem Studies, the Cornell Center for the Environment and Sigma Xi.

Roger Segelken | Cornell University
Further information:
http://www.news.cornell.edu/releases/July03/ozone_trees.hrs.html

More articles from Ecology, The Environment and Conservation:

nachricht How to detect water contamination in situ?
22.09.2016 | Tomsk Polytechnic University (TPU)

nachricht Quantifying the chemical effects of air pollutants on oxidative stress and human health
12.09.2016 | Max-Planck-Institut für Chemie

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>