Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Systems tool new resource to aid groundwater cleanup

20.05.2003


After almost 50 years of nuclear materials production at the 586-square-mile Hanford Site in southeastern Washington, there are more than 700 waste sites with the potential to release contaminants to the soil and groundwater. These sites vary significantly in their inventories of radioactive and chemical contaminants and potential for contaminants to migrate through the soil to the groundwater and the Columbia River. Understanding which waste sites have the most significant impact and the cumulative effect of all the waste sites is important as decision makers investigate options for cleanup and closure of Hanford.



Researchers at the Department of Energy’s Pacific Northwest National Laboratory have developed a comprehensive new tool that will provide federal and state regulators with some of the critical information they need to help protect people, the environment and the Columbia River.

The System Assessment Capability, or SAC, is an integrated system of computer models and databases that predicts the movement and fate of contaminants through the vadose zone, the groundwater and to the Columbia River. The vadose zone is the soil above the groundwater. SAC also assesses the impact of contaminants on human health, animals and the environment.


Instead of showing each waste site in isolation as has been done in the past, SAC shows each site in context. “It looks at all the waste sites at Hanford in relationship to each other and how they contribute to future impact,” said Bob Bryce, SAC project manager for PNNL. “Using SAC, we can see which waste sites are making the greatest contribution to future impact and clean them up first.”

A 14-member team of scientists in fields ranging from civil engineering to zoology created the two sets of computer models that are at the heart of SAC. One set simulates how contaminants move through the environment. The second set estimates risk and impact from those contaminants.

The environmental model is based on a comprehensive inventory of potential contaminants from Hanford operations as far back as 1944. With information about the quantity and concentration of contaminants at a site, SAC determines how the contaminant will behave. SAC models how the contaminant will discharge to the soil and move to the groundwater, discharge into the groundwater and, finally, enter the Columbia River.

SAC models these types of scenarios based on data about the geology, chemistry and hydrology of the site. It also predicts the consequences of these scenarios on the environment and the impact of various cleanup options. “These capabilities will be an important information source to aid decision makers in prioritizing cleanup of contaminated sites and putting limited funding to best use,” Bryce said.

Scientists have tested the validity of SAC by comparing SAC results to known plume migrations at the Hanford Site over time. Researchers are preparing to conduct a composite analysis of the future impacts of remaining waste at Hanford. The results of this study will be considered as future waste disposal decisions are made at the site. SAC is an integrated part of DOE’s Groundwater Protection Project.


Business inquiries on SAC should be directed to Kathryn Lang at (509) 375-3837. Business inquiries on other PNNL research and technologies should be directed to 1-888-375-PNNL or inquiry@pnl.gov .


PNNL is a DOE Office of Science research facility and delivers breakthrough science and technology in areas of environment, energy, health, fundamental sciences and national security. Battelle, based in Columbus, Ohio, has operated PNNL for DOE since 1965.

Geoff Harvey | PNNL
Further information:
http://www.pnl.gov/news/2003/03-17.htm

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>