Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Systems tool new resource to aid groundwater cleanup

20.05.2003


After almost 50 years of nuclear materials production at the 586-square-mile Hanford Site in southeastern Washington, there are more than 700 waste sites with the potential to release contaminants to the soil and groundwater. These sites vary significantly in their inventories of radioactive and chemical contaminants and potential for contaminants to migrate through the soil to the groundwater and the Columbia River. Understanding which waste sites have the most significant impact and the cumulative effect of all the waste sites is important as decision makers investigate options for cleanup and closure of Hanford.



Researchers at the Department of Energy’s Pacific Northwest National Laboratory have developed a comprehensive new tool that will provide federal and state regulators with some of the critical information they need to help protect people, the environment and the Columbia River.

The System Assessment Capability, or SAC, is an integrated system of computer models and databases that predicts the movement and fate of contaminants through the vadose zone, the groundwater and to the Columbia River. The vadose zone is the soil above the groundwater. SAC also assesses the impact of contaminants on human health, animals and the environment.


Instead of showing each waste site in isolation as has been done in the past, SAC shows each site in context. “It looks at all the waste sites at Hanford in relationship to each other and how they contribute to future impact,” said Bob Bryce, SAC project manager for PNNL. “Using SAC, we can see which waste sites are making the greatest contribution to future impact and clean them up first.”

A 14-member team of scientists in fields ranging from civil engineering to zoology created the two sets of computer models that are at the heart of SAC. One set simulates how contaminants move through the environment. The second set estimates risk and impact from those contaminants.

The environmental model is based on a comprehensive inventory of potential contaminants from Hanford operations as far back as 1944. With information about the quantity and concentration of contaminants at a site, SAC determines how the contaminant will behave. SAC models how the contaminant will discharge to the soil and move to the groundwater, discharge into the groundwater and, finally, enter the Columbia River.

SAC models these types of scenarios based on data about the geology, chemistry and hydrology of the site. It also predicts the consequences of these scenarios on the environment and the impact of various cleanup options. “These capabilities will be an important information source to aid decision makers in prioritizing cleanup of contaminated sites and putting limited funding to best use,” Bryce said.

Scientists have tested the validity of SAC by comparing SAC results to known plume migrations at the Hanford Site over time. Researchers are preparing to conduct a composite analysis of the future impacts of remaining waste at Hanford. The results of this study will be considered as future waste disposal decisions are made at the site. SAC is an integrated part of DOE’s Groundwater Protection Project.


Business inquiries on SAC should be directed to Kathryn Lang at (509) 375-3837. Business inquiries on other PNNL research and technologies should be directed to 1-888-375-PNNL or inquiry@pnl.gov .


PNNL is a DOE Office of Science research facility and delivers breakthrough science and technology in areas of environment, energy, health, fundamental sciences and national security. Battelle, based in Columbus, Ohio, has operated PNNL for DOE since 1965.

Geoff Harvey | PNNL
Further information:
http://www.pnl.gov/news/2003/03-17.htm

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>