Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Systems tool new resource to aid groundwater cleanup


After almost 50 years of nuclear materials production at the 586-square-mile Hanford Site in southeastern Washington, there are more than 700 waste sites with the potential to release contaminants to the soil and groundwater. These sites vary significantly in their inventories of radioactive and chemical contaminants and potential for contaminants to migrate through the soil to the groundwater and the Columbia River. Understanding which waste sites have the most significant impact and the cumulative effect of all the waste sites is important as decision makers investigate options for cleanup and closure of Hanford.

Researchers at the Department of Energy’s Pacific Northwest National Laboratory have developed a comprehensive new tool that will provide federal and state regulators with some of the critical information they need to help protect people, the environment and the Columbia River.

The System Assessment Capability, or SAC, is an integrated system of computer models and databases that predicts the movement and fate of contaminants through the vadose zone, the groundwater and to the Columbia River. The vadose zone is the soil above the groundwater. SAC also assesses the impact of contaminants on human health, animals and the environment.

Instead of showing each waste site in isolation as has been done in the past, SAC shows each site in context. “It looks at all the waste sites at Hanford in relationship to each other and how they contribute to future impact,” said Bob Bryce, SAC project manager for PNNL. “Using SAC, we can see which waste sites are making the greatest contribution to future impact and clean them up first.”

A 14-member team of scientists in fields ranging from civil engineering to zoology created the two sets of computer models that are at the heart of SAC. One set simulates how contaminants move through the environment. The second set estimates risk and impact from those contaminants.

The environmental model is based on a comprehensive inventory of potential contaminants from Hanford operations as far back as 1944. With information about the quantity and concentration of contaminants at a site, SAC determines how the contaminant will behave. SAC models how the contaminant will discharge to the soil and move to the groundwater, discharge into the groundwater and, finally, enter the Columbia River.

SAC models these types of scenarios based on data about the geology, chemistry and hydrology of the site. It also predicts the consequences of these scenarios on the environment and the impact of various cleanup options. “These capabilities will be an important information source to aid decision makers in prioritizing cleanup of contaminated sites and putting limited funding to best use,” Bryce said.

Scientists have tested the validity of SAC by comparing SAC results to known plume migrations at the Hanford Site over time. Researchers are preparing to conduct a composite analysis of the future impacts of remaining waste at Hanford. The results of this study will be considered as future waste disposal decisions are made at the site. SAC is an integrated part of DOE’s Groundwater Protection Project.

Business inquiries on SAC should be directed to Kathryn Lang at (509) 375-3837. Business inquiries on other PNNL research and technologies should be directed to 1-888-375-PNNL or .

PNNL is a DOE Office of Science research facility and delivers breakthrough science and technology in areas of environment, energy, health, fundamental sciences and national security. Battelle, based in Columbus, Ohio, has operated PNNL for DOE since 1965.

Geoff Harvey | PNNL
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>