Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Los Alamos flips the mercury ’off’ switch

25.03.2003


Mercury, that silvery liquid metal ubiquitous in switches, pressure gauges and thermometers, is an environmental bad-boy and toxic to humans through inhalation, skin contact and ingestion. It is easily spilled and can go unnoticed in aging lab equipment.



However, with new technology, mercury can be practically erased from the typical laboratory setting, reducing and even eliminating the environmental and health hazards, according to researchers at Los Alamos National Laboratory who present their findings Monday at the annual meeting of the American Chemical Society.

"We make the case," said Michael Cournoyer of the Laboratory’s Nuclear Materials Technology Division, "that aside from certain high-accuracy pressure-testing and calibration devices, there is no reason to buy new lab equipment that contains mercury."


Cournoyer’s talk will take place at 2 p.m. in room 222 of the Morial Convention Center, 900 Convention Center Boulevard, New Orleans, La.

This is a lesson learned, according to Cournoyer, from a clean up of the Chemistry and Metallurgy Research facility at Los Alamos. During a 2000 waste disposal program, two separate small mercury spills took place at CMR as a result of removing old electrical equipment. Although no direct evidence was uncovered, it was assumed that the mercury came from broken switches or other electrical devices. The spills were fully cleaned, but the events showed that more needed to be done to avoid or prevent mercury contamination.

"The Laboratory needed to better characterize old equipment before its removal, to make sure what possible hazards were present, mercury-specific spill kits needed to be on hand for 100 milliliter or smaller spills, and a waste avoidance program needed to be implemented to reduce or eliminate mercury-laden mixed wastes," said Cournoyer.

After the experiences of 2000, the Laboratory began an aggressive mercury waste avoidance program, according to Cournoyer. Mercury-free alternatives for pressure gauges, electronic relays, switches and thermometers were identified and used to replace mercury-containing devices with an eye toward environmentally preferable products.

"There are several mercury-free barometers and vacuum gauges, liquid-filled bourdon gauges and electronic thermometers and pressure gauges available," said Cournoyer. "The overall reduction in mercury-dependent instruments is significant, there are fewer risks of spills and compared to the costs associated with mercury disposal and clean-up the use of alternatives is also less expensive."

In addition to alternative instruments, the Laboratory’s mercury waste avoidance program considers disposal options such as manufacturer take-back and recycling policies, the use of specialized mercury vacuums and amalgamating kits to quickly, safely and cost-effectively respond to mercury spills, and clearly defined disposal pathways that could include a system of mercury distillation to remove the metal from certain mixed wastes.

Pollution prevention issues continue to be at the forefront of planning and design as the Laboratory seeks to build new or replacement nuclear facilities, with a focus on worker safety, use of environmentally friendly materials and future clean-up requirements, according to Cournoyer. "Pollution prevention and waste minimization initiatives are a major part of our risk management strategy with the goal of contributing to the scientific and operational excellence of the Laboratory by decreasing the hazards, risks and waste volume across the board, not just for mercury."


Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health and national security concerns.

Kevin Roark | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>