Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can carbon sequestration solve global warming?

17.02.2003


The U.S. Government is spending millions of dollars to research the feasibility of stuffing carbon dioxide into coal seams and fields of briny water deep beneath the Earth. But, a scientist at the American Association for the Advancement of Science (AAAS) Annual Meeting argues that the government isn’t thinking big enough in its plans to remove carbon dioxide from the atmosphere.



Dissatisfied with the long-term potential of most current technologies for carbon sequestration, Klaus Lackner, Ewing-Worzel Professor of Geophysics at Columbia University, has designs for new power plants that would capture carbon dioxide before it leaves the facility, as well as for "synthetic trees" that would pluck carbon from the air, mix it with magnesium silicate, and store the carbon in the "rocks" that would result from the chemical interaction between the elements.

"Injecting carbon underground is a short-term solution," Lackner said. "The oil industry has done this with 20 million tons a year in West Texas, but that is not the scale we’re talking about here. We need to find a way to put away 20 billion tons." The Intergovernmental Panel on Climate Change has estimated that worldwide carbon dioxide emissions could more than triple over the next 100 years, from 7.4 billion tons of carbon per year in 1997 to approximately 20 billion tons per year by 2100. Lackner argued that large-scale carbon sequestration would allow the continued use of carbon-based fuels during the time needed to develop alternative sources of energy.


Encouraged by preliminary reports indicating the feasibility of carbon sequestration in coal seams and deep saline reservoirs, the U.S. Department of Energy recently announced it will fund public-private ventures to explore the capture of carbon, but researchers say there are considerable barriers to be overcome before the technology can be widely implemented. Injecting carbon into coal seams, for example, would force millions of gallons of salty water to the Earth’s surface, substantially greater amounts than the briny water produced during recovery of natural gas.

"This is not a trivial problem," said Curt White, Carbon Sequestration Science Focus Area Leader at the National Energy Technology Laboratory, Pittsburgh, PA, who will report on new findings regarding the physical and chemical phenomena that take place when carbon dioxide is injected into coal seams, and discuss the projected storage capacity of coal seams.

White will detail some of the technological obstacles to performing sequestration of carbon dioxide in deep unmineable coal beds, as well as parallel efforts to identify and recover the methane gas that is found in some of those sites. The valuable gas offers hope that the cost of capturing carbon can be covered.

Water disposal is a challenge because high concentrations of salts and other dissolved solids can be toxic to some organisms, White said. "Development of technologies to properly dispose of huge amounts of produced water is a problem area that needs further research." White and his colleagues are studying surveys conducted by the U.S. Bureau of Mines to determine which coal seams in the United States might contain the most methane. The researchers are also exploring the long-term impact of pumping carbon into coal seams and brine fields.

"We now have a much better understanding of what we think is going to happen," White said. "I think that with the proper research and the right resources, the problem areas can be overcome."

The capture of carbon will not become routine, however, until steps are taken to reduce greenhouse gas emissions, according to Howard Herzog, principal research engineer at Massachusetts Institute of Technology Laboratory for Energy and the Environment.

"Unless the economic incentives are in place, the technology is not going to go anywhere," said Herzog, who studies the economics of carbon sequestration. "Right now, the price of emitting carbons is almost free. If it goes up to about $100 per ton of carbon produced, you’d begin to see some significant scale of capture and storage."


Monica Amarelo | EurekAlert!
Further information:
http://www.aaas.org/

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>