Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Can carbon sequestration solve global warming?


The U.S. Government is spending millions of dollars to research the feasibility of stuffing carbon dioxide into coal seams and fields of briny water deep beneath the Earth. But, a scientist at the American Association for the Advancement of Science (AAAS) Annual Meeting argues that the government isn’t thinking big enough in its plans to remove carbon dioxide from the atmosphere.

Dissatisfied with the long-term potential of most current technologies for carbon sequestration, Klaus Lackner, Ewing-Worzel Professor of Geophysics at Columbia University, has designs for new power plants that would capture carbon dioxide before it leaves the facility, as well as for "synthetic trees" that would pluck carbon from the air, mix it with magnesium silicate, and store the carbon in the "rocks" that would result from the chemical interaction between the elements.

"Injecting carbon underground is a short-term solution," Lackner said. "The oil industry has done this with 20 million tons a year in West Texas, but that is not the scale we’re talking about here. We need to find a way to put away 20 billion tons." The Intergovernmental Panel on Climate Change has estimated that worldwide carbon dioxide emissions could more than triple over the next 100 years, from 7.4 billion tons of carbon per year in 1997 to approximately 20 billion tons per year by 2100. Lackner argued that large-scale carbon sequestration would allow the continued use of carbon-based fuels during the time needed to develop alternative sources of energy.

Encouraged by preliminary reports indicating the feasibility of carbon sequestration in coal seams and deep saline reservoirs, the U.S. Department of Energy recently announced it will fund public-private ventures to explore the capture of carbon, but researchers say there are considerable barriers to be overcome before the technology can be widely implemented. Injecting carbon into coal seams, for example, would force millions of gallons of salty water to the Earth’s surface, substantially greater amounts than the briny water produced during recovery of natural gas.

"This is not a trivial problem," said Curt White, Carbon Sequestration Science Focus Area Leader at the National Energy Technology Laboratory, Pittsburgh, PA, who will report on new findings regarding the physical and chemical phenomena that take place when carbon dioxide is injected into coal seams, and discuss the projected storage capacity of coal seams.

White will detail some of the technological obstacles to performing sequestration of carbon dioxide in deep unmineable coal beds, as well as parallel efforts to identify and recover the methane gas that is found in some of those sites. The valuable gas offers hope that the cost of capturing carbon can be covered.

Water disposal is a challenge because high concentrations of salts and other dissolved solids can be toxic to some organisms, White said. "Development of technologies to properly dispose of huge amounts of produced water is a problem area that needs further research." White and his colleagues are studying surveys conducted by the U.S. Bureau of Mines to determine which coal seams in the United States might contain the most methane. The researchers are also exploring the long-term impact of pumping carbon into coal seams and brine fields.

"We now have a much better understanding of what we think is going to happen," White said. "I think that with the proper research and the right resources, the problem areas can be overcome."

The capture of carbon will not become routine, however, until steps are taken to reduce greenhouse gas emissions, according to Howard Herzog, principal research engineer at Massachusetts Institute of Technology Laboratory for Energy and the Environment.

"Unless the economic incentives are in place, the technology is not going to go anywhere," said Herzog, who studies the economics of carbon sequestration. "Right now, the price of emitting carbons is almost free. If it goes up to about $100 per ton of carbon produced, you’d begin to see some significant scale of capture and storage."

Monica Amarelo | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>