Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical deforestation and global warming

14.02.2003


Smithsonian scientist challenges results of recent study



Late last year, Frédéric Achard and colleagues published a controversial article in which they contended that earlier estimates of worldwide tropical deforestation and atmospheric carbon emissions were too high. In the February 14 issue of Science, Philip Fearnside from the National Institute for Amazonian Research in Brazil, and William Laurance from the Smithsonian Tropical Research Institute in Panama argue that the Achard study contains serious flaws rendering its conclusions about greenhouse gases unreliable.
The article in question ("Determination of deforestation rates of the world’s humid tropical forests", Science, vol. 297, pages 999-1002), which received extensive press coverage, asserted that only about 0.6 to 1.0 billion tons of greenhouse gases (most carbon dioxide and carbon monoxide) were being produced by the razing and felling of tropical forests each year. This estimate is considerably lower than those of earlier studies, which estimated up to 2.4 billion tons annually.

Fearnside and Laurance list seven serious errors or limitations of the Achard study, which, they say, collectively lead to a major underestimate of greenhouse gas emissions.



Among the errors they identify is that the Achard team failed to include drier tropical forests--which are also being rapidly cleared and burned--in their estimate. Other concerns include underestimating the amount of biomass--and hence the amount of carbon--contained in tropical forests. The study assumes that regenerating forests on abandoned lands will re-absorb large amounts of atmospheric carbon. In fact, such forests are often re-cleared after a few years. The study also fails to consider the effects of important greenhouse gases like methane and nitrous oxide, which are also produced by deforestation.

Fearnside and Laurance further assert that the effects on global warming of selective logging, habitat fragmentation, and other types of forest degradation are not included in the Achard study. Selective logging, for example, does not cause deforestation per se but produces hundreds of millions of tons of greenhouse gas emissions each year.

"When you look at all these factors, you can’t help but conclude that their numbers are too small," said Laurance. "They’re suggesting that tropical deforestation and degradation accounts for only about a tenth of the global production of greenhouse gases. Personally, I’d argue that their estimate is two to three times too low."

Each year, humans produce seven to eight billion tons of greenhouse gas emissions, which are considered the major cause of global warming. Most emissions are produced by the burning of fossil fuels and tropical deforestation, but the relative importance of these two sources remains controversial.



For further information:
William F. Laurance
Smithsonian Tropical Research Institute
Balboa, Panama
Phone: 507-314-9206 and 507-212-8252
Email: laurancew@tivoli.si.edu

Philip M. Fearnside
National Institute for Amazonian Research
Manaus, Brazil
Phone: 55-92-642-8913 and 55-92-643-1822
Email: pmfearn@inpa.gov.br

Researchers at the Smithsonian Tropical Research Institute, with headquarters in Panama City, Panama, study the past, present and future of tropical biodiversity and its implications for humankind.

Dr. Bill Laurance | EurekAlert!
Further information:
http://www.si.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>