Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are Wildland Fires Fueling the Greenhouse?

10.12.2002


Wildland fires are taking tons of carbon out of storage and feeding it into the atmosphere as carbon dioxide, a primary greenhouse gas. Drought makes things worse, stunting tree growth and turning forests into tinderboxes. And when human activity disturbs the environment, the ability of forests to store carbon is further diminished.




These are some of the preliminary findings from computer modeling studies of the Colorado wildfires of 2002 being presented in San Francisco, December 6–10, at the annual meeting of the American Geophysical Union (AGU). A team of researchers from Colorado State University (Fort Collins), the U.S. Geological Survey (Denver), and the National Center for Atmospheric Research (NCAR, Boulder) conducted the research.

"We’re using the western U.S. as a case study area where climate and land use are interacting in several interesting ways," says NCAR senior scientist David Schimel, who’s been collaborating with Dennis Ojima (CSU) and Jason Neff (USGS) on the project. Western lands—especially the evergreen forests—represent roughly half of U.S. carbon storage. Changes in land use, fire suppression strategies, and climate all have potential to increase wildland fires.


The researchers developed a new computer model of a complex forest ecosystem to simulate the release of carbon during the 2002 fire season in Colorado. The findings estimate how much carbon would be stored in a normal year compared to a drought year, such as 2002. More carbon is freed from storage during droughts, not only because more tinder-dry vegetation burns, but because plants deprived of water grow more slowly, absorbing and storing less carbon in their tissues.

The conclusion from these early studies is that the fires have had a significant effect on the regional carbon balance, changing Colorado from a storage area to a source of atmospheric carbon. And, since carbon circulates globally, the Colorado fires even had a very small effect on the global carbon budget.

The team is also using computer models to compare different approaches to reducing wildland fire risk. To simulate regrowth of burned areas over the next 30 years, they use a scenario that includes the effects on vegetation growth rates of elevated carbon dioxide. The researchers then compare different fire management strategies. "We don’t know which method takes more carbon out of storage, mechanical thinning or prescribed burning, but that’s one of the questions we’re looking at," Schimel says.

"Land disturbance is a fundamental factor shaping ecosystems," Schimel says. Computer models have been used before to estimate how much carbon dioxide is circulating in the atmosphere, how much is stored as carbon in vegetation and soils, and how much is shifting between land storage and the atmosphere. However, "it’s much harder to take the system apart than early modeling efforts suggested," says Schimel. For example, increasing road density in the West has been correlated with increasing wildfires. Both the presence of more people to ignite fires and the impact of roads on surface and groundwater are implicated. Clearcutting and road building channel away water formerly held in place by the living forest floor, causing a drop in the water table. The current project incorporates land use, drought, soil health, and other factors to better capture the complexity of ecosystem interactions at the local level.

Projections of climate change in the West include hotter temperatures and increased drought, a recipe for more forest fires. If further research supports the project’s early findings, "We’re either going to be spending a lot more money on fire suppression or we’re going to be seeing a lot more carbon released by wildfires," Schimel says.

Writer: Zhenya Gallon

Zhenya Gallon | EurekAlert!
Further information:
http://www.ucar.edu/communications/newsreleases/2002/cocarbon.html

More articles from Ecology, The Environment and Conservation:

nachricht Making Oceans Plastic Free - Project tackles the problem of plastic pollution in the oceans
31.05.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Nitrogen Oxides Emissions: Traffic Dramatically Underestimated as Major Polluter
31.05.2017 | Universität Innsbruck

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>