Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are Wildland Fires Fueling the Greenhouse?

10.12.2002


Wildland fires are taking tons of carbon out of storage and feeding it into the atmosphere as carbon dioxide, a primary greenhouse gas. Drought makes things worse, stunting tree growth and turning forests into tinderboxes. And when human activity disturbs the environment, the ability of forests to store carbon is further diminished.




These are some of the preliminary findings from computer modeling studies of the Colorado wildfires of 2002 being presented in San Francisco, December 6–10, at the annual meeting of the American Geophysical Union (AGU). A team of researchers from Colorado State University (Fort Collins), the U.S. Geological Survey (Denver), and the National Center for Atmospheric Research (NCAR, Boulder) conducted the research.

"We’re using the western U.S. as a case study area where climate and land use are interacting in several interesting ways," says NCAR senior scientist David Schimel, who’s been collaborating with Dennis Ojima (CSU) and Jason Neff (USGS) on the project. Western lands—especially the evergreen forests—represent roughly half of U.S. carbon storage. Changes in land use, fire suppression strategies, and climate all have potential to increase wildland fires.


The researchers developed a new computer model of a complex forest ecosystem to simulate the release of carbon during the 2002 fire season in Colorado. The findings estimate how much carbon would be stored in a normal year compared to a drought year, such as 2002. More carbon is freed from storage during droughts, not only because more tinder-dry vegetation burns, but because plants deprived of water grow more slowly, absorbing and storing less carbon in their tissues.

The conclusion from these early studies is that the fires have had a significant effect on the regional carbon balance, changing Colorado from a storage area to a source of atmospheric carbon. And, since carbon circulates globally, the Colorado fires even had a very small effect on the global carbon budget.

The team is also using computer models to compare different approaches to reducing wildland fire risk. To simulate regrowth of burned areas over the next 30 years, they use a scenario that includes the effects on vegetation growth rates of elevated carbon dioxide. The researchers then compare different fire management strategies. "We don’t know which method takes more carbon out of storage, mechanical thinning or prescribed burning, but that’s one of the questions we’re looking at," Schimel says.

"Land disturbance is a fundamental factor shaping ecosystems," Schimel says. Computer models have been used before to estimate how much carbon dioxide is circulating in the atmosphere, how much is stored as carbon in vegetation and soils, and how much is shifting between land storage and the atmosphere. However, "it’s much harder to take the system apart than early modeling efforts suggested," says Schimel. For example, increasing road density in the West has been correlated with increasing wildfires. Both the presence of more people to ignite fires and the impact of roads on surface and groundwater are implicated. Clearcutting and road building channel away water formerly held in place by the living forest floor, causing a drop in the water table. The current project incorporates land use, drought, soil health, and other factors to better capture the complexity of ecosystem interactions at the local level.

Projections of climate change in the West include hotter temperatures and increased drought, a recipe for more forest fires. If further research supports the project’s early findings, "We’re either going to be spending a lot more money on fire suppression or we’re going to be seeing a lot more carbon released by wildfires," Schimel says.

Writer: Zhenya Gallon

Zhenya Gallon | EurekAlert!
Further information:
http://www.ucar.edu/communications/newsreleases/2002/cocarbon.html

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>