Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are Wildland Fires Fueling the Greenhouse?

10.12.2002


Wildland fires are taking tons of carbon out of storage and feeding it into the atmosphere as carbon dioxide, a primary greenhouse gas. Drought makes things worse, stunting tree growth and turning forests into tinderboxes. And when human activity disturbs the environment, the ability of forests to store carbon is further diminished.




These are some of the preliminary findings from computer modeling studies of the Colorado wildfires of 2002 being presented in San Francisco, December 6–10, at the annual meeting of the American Geophysical Union (AGU). A team of researchers from Colorado State University (Fort Collins), the U.S. Geological Survey (Denver), and the National Center for Atmospheric Research (NCAR, Boulder) conducted the research.

"We’re using the western U.S. as a case study area where climate and land use are interacting in several interesting ways," says NCAR senior scientist David Schimel, who’s been collaborating with Dennis Ojima (CSU) and Jason Neff (USGS) on the project. Western lands—especially the evergreen forests—represent roughly half of U.S. carbon storage. Changes in land use, fire suppression strategies, and climate all have potential to increase wildland fires.


The researchers developed a new computer model of a complex forest ecosystem to simulate the release of carbon during the 2002 fire season in Colorado. The findings estimate how much carbon would be stored in a normal year compared to a drought year, such as 2002. More carbon is freed from storage during droughts, not only because more tinder-dry vegetation burns, but because plants deprived of water grow more slowly, absorbing and storing less carbon in their tissues.

The conclusion from these early studies is that the fires have had a significant effect on the regional carbon balance, changing Colorado from a storage area to a source of atmospheric carbon. And, since carbon circulates globally, the Colorado fires even had a very small effect on the global carbon budget.

The team is also using computer models to compare different approaches to reducing wildland fire risk. To simulate regrowth of burned areas over the next 30 years, they use a scenario that includes the effects on vegetation growth rates of elevated carbon dioxide. The researchers then compare different fire management strategies. "We don’t know which method takes more carbon out of storage, mechanical thinning or prescribed burning, but that’s one of the questions we’re looking at," Schimel says.

"Land disturbance is a fundamental factor shaping ecosystems," Schimel says. Computer models have been used before to estimate how much carbon dioxide is circulating in the atmosphere, how much is stored as carbon in vegetation and soils, and how much is shifting between land storage and the atmosphere. However, "it’s much harder to take the system apart than early modeling efforts suggested," says Schimel. For example, increasing road density in the West has been correlated with increasing wildfires. Both the presence of more people to ignite fires and the impact of roads on surface and groundwater are implicated. Clearcutting and road building channel away water formerly held in place by the living forest floor, causing a drop in the water table. The current project incorporates land use, drought, soil health, and other factors to better capture the complexity of ecosystem interactions at the local level.

Projections of climate change in the West include hotter temperatures and increased drought, a recipe for more forest fires. If further research supports the project’s early findings, "We’re either going to be spending a lot more money on fire suppression or we’re going to be seeing a lot more carbon released by wildfires," Schimel says.

Writer: Zhenya Gallon

Zhenya Gallon | EurekAlert!
Further information:
http://www.ucar.edu/communications/newsreleases/2002/cocarbon.html

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>