Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transition from El Niño to La Niña affected vegetation

06.11.2002


NASA scientists using satellite data have shown that shifts in rainfall patterns from one of the strongest El Niño events of the century in 1997 to a La Niña event in 2000 significantly changed vegetation patterns over Africa.

Assaf Anyamba and Compton Tucker of NASA’s Goddard Space Flight Center, Greenbelt Md., and Robert Mahoney of Global Science and Technology Inc (GST) analyzed satellite derived images of vegetation from 1997 to 2000. They noticed regions of above normal "greenness" over East Africa associated with patterns of above normal rainfall during the 1997-1998 El Niño event. At the same time, they observed below normal "greenness" over southern Africa associated below normal rainfall conditions there.

During the transition to La Niña, rainfall patterns reversed. Southern Africa experienced above normal rainfall and East Africa received below normal rainfall, resulting in a corresponding reversal of vegetation greenness patterns.



"These changes vegetation patterns have implications for agriculture, livestock farming and vector borne disease outbreaks especially is semi-arid land of Africa," Anyamba said. "Above normal vegetation conditions are an indicator of improved pasture conditions which boosts livestock production in these areas."

In addition, it is also an indicator of the likelihood of bumper harvests. Agricultural production in these areas rises and wanes to the tune of the El Niño -Southern Oscillation (ENSO) patterns as revealed here by changes in vegetation patterns during years of above normal and below normal rainfall. During above normal rainfall, vegetation conditions provide habitats necessary for the breeding of vector borne diseases such as Malaria Rift Valley Fever as was the case in 1997/98 in East Africa.

Satellite monitoring and mapping the extent of such anomalies in vegetation conditions can provide useful early warning information for drought, agriculture and vector borne disease outbreaks to prevent disaster situations.

Anyamba and his colleagues analyzed 20 years of Normalized Difference Vegetation Index (NDVI) data to determine changes in vegetation greenness patterns. Tucker, a co-author of the report, developed the NDVI data to monitor vegetation using orbiting weather satellites.

The NDVI data is derived from the Advanced Very High Resolution Radiometer (AVHRR) instrument flown aboard the National Oceanic and Atmospheric Administration’s (NOAA) polar orbiting satellites.

NDVI measures vegetation "greenness" or plant health based on the principle that plants prefer to use (absorb) visible red colors (wavelengths) of sunlight for photosynthesis during growth. For example, a healthy plant will absorb more visible red sunlight for photosynthesis and reflect less back to space. A plant stressed by drought will photosynthesize less and reflect more sunlight back to space. A satellite can measure the amount of sunlight reflected in the red and near infrared spectrum and the NDVI can be computed to provide a relative measure of greenness or plant health that can be displayed as an image.

El Niño and La Niña events are both part of a cycle of recurring warmings and coolings of the ocean surface in the central and eastern Pacific known as the El Niño Southern Oscillation (ENSO). El Niño refers to the warm phase of the oscillation and La Niña refers to the cool phase. Each of these phases affects weather patterns worldwide and changes in rainfall can impact vegetation patterns.

Above normal rainfall during the 1997-1998 El Niño in East Africa and during the 1999-2000 La Niña in southern Africa improved pasture conditions in those areas, but also caused widespread flooding and disease outbreaks. The drought that followed in East Africa during the 1999 to 2000 La Niña was devastating and caused widespread famine.



This work was made possible through funding by NASA Headquarters’ Earth Science Enterprise, dedicated to better understanding and protecting our home planet, as well as the United States Agency for International Development/Famine Early Warning System Network programs.

The findings appear in the November 1 issue of the American Meteorological Society’s Journal of Climate (Vol. 15, Issue 21: 3096-3103, 2002).

Rob Gutro | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

Large-scale battery storage system in field trial

11.12.2017 | Power and Electrical Engineering

See, understand and experience the work of the future

11.12.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>