Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insect infestation models may shed light on insect and disease outbreaks

01.11.2002


Models of Larch budmoth outbreaks in the European Alps may eventually show scientists how to model a variety of disease and insect eruptions that rely on a combination of enemy, host and spatial movement to decimate populations, according to a team of ecologists.



"We use theoretical models to help understand the spatial component in these outbreaks and to predict how spatial spread occurs," says Dr. Ottar N. Bjornstad, assistant professor of entomology and biology at Penn State. "With local outbreaks we expect a complex spread of pest species through the landscape, here, the species spreads in waves."

The Larch budmoth feeds on larch trees, a common evergreen variety, consuming the needles and defoliating the branches. In the European Alps, the infestation moves as predictable waves from west to east completely defoliating forests beginning in the French and Italian Alps and moving across the continent through Switzerland and into Austria.


Bjornstad; M. Peltonen and A.M. Liebhold of the U.S. Department of Agriculture, and W. Baltensweiler, retired from the Swiss Institute of Technology, Zurich, report in today’s (Nov. 1) Science that "forty years of detailed surveys of defoliation caused by the Larch budmoth testify to conspicuous waves in the space-time dynamics of this system.

Creating models that predict this wave spread required consideration of the pest, its parasites, and the geographic distribution of the Larch. The historic pattern of Larch outbreaks is outbreaks that occur about every nine years and last for three to four years. The researchers confirmed that the spread of the outbreaks occurred in traveling waves and that space-time models accurately predict the geographic spread and timing of the outbreaks.

The Larch budmoth never dies out in any area of the Alps even though it totally defoliates an area. A small number of insects remain, feeding off resources left behind. While the larch trees recover, the budmoth population is kept in check by parasitic wasps that lay their eggs in the budmoth larvae. When the larva pupates, rather than a moth appearing, the adult form of the wasp emerges. Eventually, as resources improve, the budmoth population increases to reach pest levels and, because the larvae totally defoliate an area, the outbreak moves on and travels in waves through the Alps moving 125 to 186 miles per year.

"We managed to make a theoretical spatial and temporal model of the interaction between the pests, in this case the Larch budmoth, the enemy parasitic wasp and the food supply," says Bjornstad. "Generating simple geographic models allows us to predict the spatial nature of the outbreak."

The Penn State researcher notes that only with the use of fast, large cluster computers that can address spatially complex equations could this work be done. The models may be locally simple, but as the area covered increases, the dynamics become extremely complex. Unfortunately, a template does not exist to model the behavior of insects like this or human diseases that also spread in similar ways.

"We are currently working to generalize the model framework to other pest systems," says Bjornstad. "With human diseases, for example, modeling the movement of people is different and more complex than modeling the movement of moths."

While a general model will probably not be possible, a class of models researchers could use to predict insect outbreaks as well as disease epidemics such as smallpox, and measles in humans or foot-and-mouth disease in domestic animals, is slowly emerging. In each case researchers must develop a deep understanding of the specific local interactions between the pest and its resource.

"The emerging picture is that if you understand the local interactions and use a class of models that embed these on maps, you can make really good predictions," says Bjornstad.

In essence, the researchers are developing a methodology for creating models that are applicable to infectious diseases in humans, animals and plants as well as insect outbreaks. Bjornstad is currently finalizing other research on human pathogens using very similar methodology.

"The key to understanding the spatial network of disease spread for humans is more difficult," Bjornstad says. "Human movement patterns are more complex so the models have to be tweaked in each system to accommodate these differences. However, the overall methodology can model spatial outbreaks whether insect or human."

Andrea Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

nachricht How to detect water contamination in situ?
22.09.2016 | Tomsk Polytechnic University (TPU)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>