Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insect infestation models may shed light on insect and disease outbreaks

01.11.2002


Models of Larch budmoth outbreaks in the European Alps may eventually show scientists how to model a variety of disease and insect eruptions that rely on a combination of enemy, host and spatial movement to decimate populations, according to a team of ecologists.



"We use theoretical models to help understand the spatial component in these outbreaks and to predict how spatial spread occurs," says Dr. Ottar N. Bjornstad, assistant professor of entomology and biology at Penn State. "With local outbreaks we expect a complex spread of pest species through the landscape, here, the species spreads in waves."

The Larch budmoth feeds on larch trees, a common evergreen variety, consuming the needles and defoliating the branches. In the European Alps, the infestation moves as predictable waves from west to east completely defoliating forests beginning in the French and Italian Alps and moving across the continent through Switzerland and into Austria.


Bjornstad; M. Peltonen and A.M. Liebhold of the U.S. Department of Agriculture, and W. Baltensweiler, retired from the Swiss Institute of Technology, Zurich, report in today’s (Nov. 1) Science that "forty years of detailed surveys of defoliation caused by the Larch budmoth testify to conspicuous waves in the space-time dynamics of this system.

Creating models that predict this wave spread required consideration of the pest, its parasites, and the geographic distribution of the Larch. The historic pattern of Larch outbreaks is outbreaks that occur about every nine years and last for three to four years. The researchers confirmed that the spread of the outbreaks occurred in traveling waves and that space-time models accurately predict the geographic spread and timing of the outbreaks.

The Larch budmoth never dies out in any area of the Alps even though it totally defoliates an area. A small number of insects remain, feeding off resources left behind. While the larch trees recover, the budmoth population is kept in check by parasitic wasps that lay their eggs in the budmoth larvae. When the larva pupates, rather than a moth appearing, the adult form of the wasp emerges. Eventually, as resources improve, the budmoth population increases to reach pest levels and, because the larvae totally defoliate an area, the outbreak moves on and travels in waves through the Alps moving 125 to 186 miles per year.

"We managed to make a theoretical spatial and temporal model of the interaction between the pests, in this case the Larch budmoth, the enemy parasitic wasp and the food supply," says Bjornstad. "Generating simple geographic models allows us to predict the spatial nature of the outbreak."

The Penn State researcher notes that only with the use of fast, large cluster computers that can address spatially complex equations could this work be done. The models may be locally simple, but as the area covered increases, the dynamics become extremely complex. Unfortunately, a template does not exist to model the behavior of insects like this or human diseases that also spread in similar ways.

"We are currently working to generalize the model framework to other pest systems," says Bjornstad. "With human diseases, for example, modeling the movement of people is different and more complex than modeling the movement of moths."

While a general model will probably not be possible, a class of models researchers could use to predict insect outbreaks as well as disease epidemics such as smallpox, and measles in humans or foot-and-mouth disease in domestic animals, is slowly emerging. In each case researchers must develop a deep understanding of the specific local interactions between the pest and its resource.

"The emerging picture is that if you understand the local interactions and use a class of models that embed these on maps, you can make really good predictions," says Bjornstad.

In essence, the researchers are developing a methodology for creating models that are applicable to infectious diseases in humans, animals and plants as well as insect outbreaks. Bjornstad is currently finalizing other research on human pathogens using very similar methodology.

"The key to understanding the spatial network of disease spread for humans is more difficult," Bjornstad says. "Human movement patterns are more complex so the models have to be tweaked in each system to accommodate these differences. However, the overall methodology can model spatial outbreaks whether insect or human."

Andrea Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>