Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modelling To Develop European Sand Dredging Guidelines

07.08.2002


Computer predictions of the effects of commercial sea-sand dredging on coastal erosion, produced by an international team headed by Dr Alan Davies of the University of Wales, Bangor`s School of Ocean Sciences, will play a key role in developing new European Guidelines for siting commercial sand dredging activities.



Increased demand for North Sea sand is anticipated, both for use as beach and sand dune nourishment and to meet demand for sand from large-scale European construction projects. Sand extraction can exacerbate coastal erosion if dredging activities are not properly sited.

Now, coastal oceanographers and engineers from 17 European leading institutes in & European countries have embarked on a major three year EU funded project, ‘SandPit` to assess what effects sand dredging may have on the sea bed ecosystems and surrounding coastlines and to develop European guidelines for sand dredging based on the optimum size, sea depth and distance from shore of any large scale commercial sand mining operation.


The SandPit project will assess the recovery time scales for the ecosystem surrounding dredging activities, and will gauge the critical depth at which sand mining has no measurable effect on the shoreline. This will be done by dredging a full-size in the North Sea. The pit will be closely monitored to measure what happens in the immediate vicinity once the sand is extracted, to see how the ecosystem recovers and to measure any changes to the adjacent coastline. These measurements will be compared to the predications currently available, and existing computer models will be improved as necessary.

Dr Alan Davies of the School of Ocean Sciences, a coastal oceanographer with more than 20 years` experience in the physical processes of sand movement, will lead the modelling group in SandPit. The group will produce computer predictions of how waves and currents along the shoreline in any one set of circumstances might be affected by dredging and how these changes will, in turn, affect the shoreline. Model improvements will be made using field data obtained during the project, starting with experiments in the North Sea this autumn.

"Sand is transported in the water column, but the amount transported depends on variables such as the particle size of the sand, on the depth at which the dredging takes place, on currents, and in shallower waters, on wave patterns. Dredging itself, by changing the shape of the sea bed, can affect the wave size and this can have consequent effects, including coastal erosion in some situations," explains Davies.

Current government guidelines regarding the volume and siting of dredging activities varies from country to country and are often based on information extrapolated from small-scale models. The aim of SandPit is to help towards putting future guidelines on a stronger scientific base.

Dr Alan Davies | alfa
Further information:
http://sandpit.wldelft.nl/mainpage/mainpage.htm

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>