Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Modelling To Develop European Sand Dredging Guidelines


Computer predictions of the effects of commercial sea-sand dredging on coastal erosion, produced by an international team headed by Dr Alan Davies of the University of Wales, Bangor`s School of Ocean Sciences, will play a key role in developing new European Guidelines for siting commercial sand dredging activities.

Increased demand for North Sea sand is anticipated, both for use as beach and sand dune nourishment and to meet demand for sand from large-scale European construction projects. Sand extraction can exacerbate coastal erosion if dredging activities are not properly sited.

Now, coastal oceanographers and engineers from 17 European leading institutes in & European countries have embarked on a major three year EU funded project, ‘SandPit` to assess what effects sand dredging may have on the sea bed ecosystems and surrounding coastlines and to develop European guidelines for sand dredging based on the optimum size, sea depth and distance from shore of any large scale commercial sand mining operation.

The SandPit project will assess the recovery time scales for the ecosystem surrounding dredging activities, and will gauge the critical depth at which sand mining has no measurable effect on the shoreline. This will be done by dredging a full-size in the North Sea. The pit will be closely monitored to measure what happens in the immediate vicinity once the sand is extracted, to see how the ecosystem recovers and to measure any changes to the adjacent coastline. These measurements will be compared to the predications currently available, and existing computer models will be improved as necessary.

Dr Alan Davies of the School of Ocean Sciences, a coastal oceanographer with more than 20 years` experience in the physical processes of sand movement, will lead the modelling group in SandPit. The group will produce computer predictions of how waves and currents along the shoreline in any one set of circumstances might be affected by dredging and how these changes will, in turn, affect the shoreline. Model improvements will be made using field data obtained during the project, starting with experiments in the North Sea this autumn.

"Sand is transported in the water column, but the amount transported depends on variables such as the particle size of the sand, on the depth at which the dredging takes place, on currents, and in shallower waters, on wave patterns. Dredging itself, by changing the shape of the sea bed, can affect the wave size and this can have consequent effects, including coastal erosion in some situations," explains Davies.

Current government guidelines regarding the volume and siting of dredging activities varies from country to country and are often based on information extrapolated from small-scale models. The aim of SandPit is to help towards putting future guidelines on a stronger scientific base.

Dr Alan Davies | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>