Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Industrial fishing threatens sharks, dolphins, billfish

05.08.2002


Industrial fishing poses the biggest threat to life and fin for sharks, dolphins and billfish that inhabit the tropical and northern Pacific Ocean, says a new study forecasting the effects of commercial fishing on ocean ecosystems.



Though not targeted by the fishing industry, some ocean species often get caught unintentionally in nets or lines used to catch tuna and other commercially valuable fish, says a study presented to scientists today, Aug. 5, at the annual meeting of the Ecological Society of America.

A University of Wisconsin-Madison group’s study points to the potential increased risks for the large, slow-growing, slow-to-reproduce animals at the top of food chain.


"It’s the sharks, dolphins and billfishes that are hurt the most," says Jefferson Hinke, a University of Wisconsin-Madison graduate student and study group member.

Now, populations of most target species are stable and viable, thanks in part to restrictions on undiscriminating fishing practices such as drift nets and fish aggregation devices. However, any substantial increase in industrial fishing could play havoc with both target and non-target animal populations, Hinke says.

"In these systems, environmental variability tends to have little effect at the top of the food web," he says. "What’s really important is the fishing."

Hinke, working under the auspices of the National Center for Ecological Analysis and Synthesis in Santa Barbara, Calif., is part of a group that is developing computer models able to accurately forecast the effects of fishing on major ocean ecosystems. The hope, he says, is to provide fishery managers with a set of tools that can be used to predict change in economically important but ecologically sensitive systems.

The models Hinke and his colleagues are working to develop can help reveal "what happens when you fish off the top of the food chain," says James Kitchell, a UW-Madison professor of zoology. "You fish in different ways, you have different effects."

In the Pacific, tuna populations - the intended and preferred catch of commercial fishing outfits from Japan, the U.S. Mexico and other Pacific nations - are in generally good shape, Hinke notes. Because these fish tend to mature and reproduce at much earlier ages than the non-target species like sharks and dolphins, their populations are able to withstand relatively heavy fishing pressure. However, increased fishing pressure would very likely cause strong declines, especially for the already very heavily fished yellowfin tuna stocks.

Other animals at that top of the ocean ecosystem heap are a different story. "Yellowfin tuna have a life span of only five years," Hinke says. "They have really fast growth rates and they can begin to reproduce early in life. A shark, on the other hand, can live 20 or 30 years and may not reproduce until it reaches 10 years of age. Sharks also produce relatively few offspring as opposed to a tuna which will spawn sometimes every day for a year and produce millions and millions of eggs."

The models being developed by Hinke and his colleagues at the National Center for Ecological Analysis and Synthesis also are meant to forecast how fish populations of all kinds will respond to different fishing scenarios. Ratcheting up fishing pressure, according to model simulations, may cause as much as a 20-50 percent decline in populations of dolphins, sharks and billfishes like marlin, sailfish and swordfish.

"The models are part of the toolbox for managers, and they have proven to be effective," Hinke says. "We can model at a level now that permits us to tell how some of these animals might respond to different levels of pressure."

Co-authors of the paper delivered by Hinke include Kitchell, who directs the UW-Madison Center for Limnology, Isaac Kaplan of the UW-Madison Center for Limnology, and George Watters, a scientist at the Pacific Fisheries Environmental Lab in Pacific Grove, Calif. Robert Olson, also a co-author, is a scientist at the Inter-American Tropical Tuna Commission in La Jolla, Calif.

CONTACT:
James Kitchell, (608) 262- 3014, kitchell@mhub.limnology.wisc.edu
Terry Devitt (608) 262-8282, trdevitt@facstaff.wisc.edu


Jefferson Hinke | EureAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>