Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Industrial fishing threatens sharks, dolphins, billfish

05.08.2002


Industrial fishing poses the biggest threat to life and fin for sharks, dolphins and billfish that inhabit the tropical and northern Pacific Ocean, says a new study forecasting the effects of commercial fishing on ocean ecosystems.



Though not targeted by the fishing industry, some ocean species often get caught unintentionally in nets or lines used to catch tuna and other commercially valuable fish, says a study presented to scientists today, Aug. 5, at the annual meeting of the Ecological Society of America.

A University of Wisconsin-Madison group’s study points to the potential increased risks for the large, slow-growing, slow-to-reproduce animals at the top of food chain.


"It’s the sharks, dolphins and billfishes that are hurt the most," says Jefferson Hinke, a University of Wisconsin-Madison graduate student and study group member.

Now, populations of most target species are stable and viable, thanks in part to restrictions on undiscriminating fishing practices such as drift nets and fish aggregation devices. However, any substantial increase in industrial fishing could play havoc with both target and non-target animal populations, Hinke says.

"In these systems, environmental variability tends to have little effect at the top of the food web," he says. "What’s really important is the fishing."

Hinke, working under the auspices of the National Center for Ecological Analysis and Synthesis in Santa Barbara, Calif., is part of a group that is developing computer models able to accurately forecast the effects of fishing on major ocean ecosystems. The hope, he says, is to provide fishery managers with a set of tools that can be used to predict change in economically important but ecologically sensitive systems.

The models Hinke and his colleagues are working to develop can help reveal "what happens when you fish off the top of the food chain," says James Kitchell, a UW-Madison professor of zoology. "You fish in different ways, you have different effects."

In the Pacific, tuna populations - the intended and preferred catch of commercial fishing outfits from Japan, the U.S. Mexico and other Pacific nations - are in generally good shape, Hinke notes. Because these fish tend to mature and reproduce at much earlier ages than the non-target species like sharks and dolphins, their populations are able to withstand relatively heavy fishing pressure. However, increased fishing pressure would very likely cause strong declines, especially for the already very heavily fished yellowfin tuna stocks.

Other animals at that top of the ocean ecosystem heap are a different story. "Yellowfin tuna have a life span of only five years," Hinke says. "They have really fast growth rates and they can begin to reproduce early in life. A shark, on the other hand, can live 20 or 30 years and may not reproduce until it reaches 10 years of age. Sharks also produce relatively few offspring as opposed to a tuna which will spawn sometimes every day for a year and produce millions and millions of eggs."

The models being developed by Hinke and his colleagues at the National Center for Ecological Analysis and Synthesis also are meant to forecast how fish populations of all kinds will respond to different fishing scenarios. Ratcheting up fishing pressure, according to model simulations, may cause as much as a 20-50 percent decline in populations of dolphins, sharks and billfishes like marlin, sailfish and swordfish.

"The models are part of the toolbox for managers, and they have proven to be effective," Hinke says. "We can model at a level now that permits us to tell how some of these animals might respond to different levels of pressure."

Co-authors of the paper delivered by Hinke include Kitchell, who directs the UW-Madison Center for Limnology, Isaac Kaplan of the UW-Madison Center for Limnology, and George Watters, a scientist at the Pacific Fisheries Environmental Lab in Pacific Grove, Calif. Robert Olson, also a co-author, is a scientist at the Inter-American Tropical Tuna Commission in La Jolla, Calif.

CONTACT:
James Kitchell, (608) 262- 3014, kitchell@mhub.limnology.wisc.edu
Terry Devitt (608) 262-8282, trdevitt@facstaff.wisc.edu


Jefferson Hinke | EureAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>