Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Industrial fishing threatens sharks, dolphins, billfish

05.08.2002


Industrial fishing poses the biggest threat to life and fin for sharks, dolphins and billfish that inhabit the tropical and northern Pacific Ocean, says a new study forecasting the effects of commercial fishing on ocean ecosystems.



Though not targeted by the fishing industry, some ocean species often get caught unintentionally in nets or lines used to catch tuna and other commercially valuable fish, says a study presented to scientists today, Aug. 5, at the annual meeting of the Ecological Society of America.

A University of Wisconsin-Madison group’s study points to the potential increased risks for the large, slow-growing, slow-to-reproduce animals at the top of food chain.


"It’s the sharks, dolphins and billfishes that are hurt the most," says Jefferson Hinke, a University of Wisconsin-Madison graduate student and study group member.

Now, populations of most target species are stable and viable, thanks in part to restrictions on undiscriminating fishing practices such as drift nets and fish aggregation devices. However, any substantial increase in industrial fishing could play havoc with both target and non-target animal populations, Hinke says.

"In these systems, environmental variability tends to have little effect at the top of the food web," he says. "What’s really important is the fishing."

Hinke, working under the auspices of the National Center for Ecological Analysis and Synthesis in Santa Barbara, Calif., is part of a group that is developing computer models able to accurately forecast the effects of fishing on major ocean ecosystems. The hope, he says, is to provide fishery managers with a set of tools that can be used to predict change in economically important but ecologically sensitive systems.

The models Hinke and his colleagues are working to develop can help reveal "what happens when you fish off the top of the food chain," says James Kitchell, a UW-Madison professor of zoology. "You fish in different ways, you have different effects."

In the Pacific, tuna populations - the intended and preferred catch of commercial fishing outfits from Japan, the U.S. Mexico and other Pacific nations - are in generally good shape, Hinke notes. Because these fish tend to mature and reproduce at much earlier ages than the non-target species like sharks and dolphins, their populations are able to withstand relatively heavy fishing pressure. However, increased fishing pressure would very likely cause strong declines, especially for the already very heavily fished yellowfin tuna stocks.

Other animals at that top of the ocean ecosystem heap are a different story. "Yellowfin tuna have a life span of only five years," Hinke says. "They have really fast growth rates and they can begin to reproduce early in life. A shark, on the other hand, can live 20 or 30 years and may not reproduce until it reaches 10 years of age. Sharks also produce relatively few offspring as opposed to a tuna which will spawn sometimes every day for a year and produce millions and millions of eggs."

The models being developed by Hinke and his colleagues at the National Center for Ecological Analysis and Synthesis also are meant to forecast how fish populations of all kinds will respond to different fishing scenarios. Ratcheting up fishing pressure, according to model simulations, may cause as much as a 20-50 percent decline in populations of dolphins, sharks and billfishes like marlin, sailfish and swordfish.

"The models are part of the toolbox for managers, and they have proven to be effective," Hinke says. "We can model at a level now that permits us to tell how some of these animals might respond to different levels of pressure."

Co-authors of the paper delivered by Hinke include Kitchell, who directs the UW-Madison Center for Limnology, Isaac Kaplan of the UW-Madison Center for Limnology, and George Watters, a scientist at the Pacific Fisheries Environmental Lab in Pacific Grove, Calif. Robert Olson, also a co-author, is a scientist at the Inter-American Tropical Tuna Commission in La Jolla, Calif.

CONTACT:
James Kitchell, (608) 262- 3014, kitchell@mhub.limnology.wisc.edu
Terry Devitt (608) 262-8282, trdevitt@facstaff.wisc.edu


Jefferson Hinke | EureAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>