Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite images reveal key to predicting outbreaks of plague

01.08.2008
Normally percolation theory is used to describe the movement of liquid through porous material. A good example of percolation is when hot water is forced through ground coffee in an espresso or Senseo machine.

By moving through the coffee via the empty spaces between the ground coffee particles, the water picks up the flavour of the coffee. Stephen Davis and colleagues at the Faculty of Veterinary Medicine, Utrecht University, report in Nature their discovery that the spread of the bubonic plague bacteria in Central Asia by gerbils, works much the same way.

Plague bacteria percolate through the landscape transmitted by fleas from one great gerbil family to the next, from burrow system to burrow system. It’s the first time percolation theory is used to accurately describe the natural dynamics of an infectious disease. The discovery might be helpful to understand how outbreaks of disease occur in other populations. It may, for example, shed new light on spread of bovine tuberculosis in badgers, and spread of viral diseases in populations of African lions.

Spread of infection predictable

Like making a good cup of coffee, there are conditions for successful percolation of the plague through gerbils. In the case of coffee, if you pack it too tightly the water will not move through and the coffee just burns. In the case of plague, if there are too few gerbils, the fleas won’t be able to move from one burrow to another, and the spread halts. The use of percolation theory by Davis can predict the final size of an outbreak of plague, starting with one infected family group. It has also determined the so called ‘abundance threshold’ necessary to be exceeded before percolation occurs, in this case the percentage of available burrows populated by gerbils.

Russian ‘Plague Archives’ show plague dynamics

In Kazakhstan and elsewhere in central Asia, the plague bacterium Yersinia pestis, source of human cases of bubonic plague, still circulates in wild populations of gerbils and other small mammals. Intensive surveillance systems established by Soviet scientists in Kazakhstan at the end of World War II appear to have successfully reduced human cases. These programs also resulted in vast amounts of data, referred to as ‘The Plague Archives’, recording the dynamics of plague in wild animals. The data for the research done by Davis comes from one of the desert plague foci in Kazakhstan where great gerbils play a central role as a plague host.

A remarkable feature of these gerbils is their complex burrow systems that create discs of bare earth, typically 30 metres in diameter and visible from space on satellite images like the ones from Google Earth. The vast tracts of land inhabited by connecting burrows of great gerbils contrast starkly with the relatively short distances of about 200 metres travelled by fleas responsible for transmission of plague. This difference in scales means that connectivity of the population is key.

Peter van der Wilt | alfa
Further information:
http://www.uu.nl

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>