Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Process used by microges to make greenhouse gases uncovered

09.07.2008
Researchers here now have a picture of a key molecule that lets microbes produce carbon dioxide and methane – the two greenhouse gases associated with global warming.
The findings relate to organisms called methanogens and are explained in the latest issue of the journal Proceedings of the National Academy of Sciences.

The publication capped a 12-year effort and can offer some insights into how industrial processes might be improved, explained Michael Chan, professor of biochemistry, and Joseph Krzycki, professor of microbiology, both of Ohio State University.

“This enzyme is the key to the whole process of methanogenesis from acetic acid,” Krzycki said. “Without it, this form of methanogenesis wouldn’t happen. Since it is so environmentally important worldwide, the impact of understanding this would be enormous.”

Methanogenesis is the process by which the gas methane is made, and it takes place everywhere across the globe, from swamps to landfills, releasing the gas that ultimately seeps into the atmosphere.

One central player in this process is the microbe called Methanosarcina barkeri, a member of an unusual group of organisms called the Archaea that is similar to both bacterial and animal cells. This organism possesses large amounts of the enzyme so important for making methane.

“We often think only of humans putting carbon dioxide and methane into the atmosphere but natural biology itself actually provides its own sizeable share,” said Chan. “This enzyme plays an important role in the process that converts acetate into these two gases.”

The research can be traced to work that Krzycki did as a graduate student in the mid-1980s studying the protein known as acetyl-CoA decarbonylase/synthase (ACDS). He was focusing on whether carbon monoxide oxidation was part of the process of methanogenesis from acetate, which had not been suspected before.

In 1995, Chan approached Krzycki about working with this protein as one of the first projects Chan took on after coming to Ohio State. The goal was to use protein crystallography to get a picture of it and figure out how it works.

An important initial step in this kind of research is to “grow” crystals of the protein molecules, and from these crystals, scientists can actually map out the protein’s structure.

“We tried for six months when I first arrived at Ohio State but at the end of that period, we couldn’t get any crystals to grow,” Chan said.

Two years later, Chan and a former graduate student, Bing Hao, went back to look at those previous crystallization experiments and discovered that crystals had eventually grown.

“The identification of these crystals allowed us to solve the structure of the protein making up the crystals, although it took 10 more years to do that,” he said. “From the structure, we got a beautiful picture of the protein that we could use to understand how it works. Viewing a structure is somewhat like looking at the schematics of an engine.”

Krzycki said that processes similar to those performed by this protein are currently being used in industry, although in those cases, high temperatures are required.

“From studying this process in these microbes, hopefully scientists can understand how their natural catalysts make this reaction work at lower temperatures,” he said.

Along with Chan, Krzycki and Hao, Weimin Gong, Zhiyi Wei, Donald Ferguson Jr. and Thomas Tallant also worked on the project. The research was supported by grants from both the National Institutes of Health and the Department of Energy.

Michael Chan | EurekAlert!
Further information:
http://www.osu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>