Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Database Shows Effects of Acid Rain on Microorganisms in Adirondack Lakes

25.06.2008
Researchers have long known that acid rain can severely decrease the diversity of plant and animal communities in fresh water lakes and ponds. However, little is known about how microscopic bacteria, which form the foundation of freshwater ecosystems, respond to acidification. To address this knowledge gap, researchers have developed one of the most comprehensive databases in existence on the impacts of acid rain at the foundation of the biological community.

Prior to the federal Clean Air Act, unhindered industrial emissions were released into the air throughout the Midwestern and Eastern United States for decades. Many of those harmful chemicals came right back down to earth in the form of acid rain, a chemical concoction that includes nitric and sulfuric acid.

Researchers have long known that acid rain can severely decrease the diversity of plant and animal communities in fresh water lakes and ponds. However, little is known about how microscopic bacteria, which form the foundation of freshwater ecosystems, respond to acidification.

To address this knowledge gap, researchers at the Darrin Fresh Water Institute of Rensselaer Polytechnic Institute have developed one of the most comprehensive databases in existence on the impacts of acid rain at the foundation of the biological community.

The team found a general link between increased acidity and decreased bacterial diversity, but surprisingly, most of the dominant species of bacteria were not directly impacted by acidification. However, some rarer types of bacterial populations were significantly or strongly correlated to acidity, rising and falling with fluctuations in water pH. The findings could eventually allow scientists to use these bacteria as indicators of lake recovery, according to Sandra Nierzwicki-Bauer, director of the Darrin Fresh Water Institute and professor of biology.

The research is part of a much broader study on how Adirondack lakes are recovering from the impacts of acidification. “Thanks in large part to the federal Clean Air Act and increased state focus on improving air quality here in New York, we are seeing a number of these lakes on a trajectory to recovery, but up until now we have had little understanding of the changing biodiversity of microbial communities within the impacted lakes as they recover,” Nierzwicki-Bauer said. “I hope this study will help other scientists expand on the research and use this data to uncover additional information on how acid-impacted lakes and their ecosystems are recovering and how we can hasten that process.”

The study was published in a recent edition of the journal Applied and Environmental Microbiology and was undertaken in partnership with the Skidaway Institute of Oceanography. The study is part of what has been a 12-year analysis on the recovery of Adirondack lakes from the effects of acid rain funded by the U.S. Environmental Protection Agency’s Adirondack Effects Assessment Program (AEAP). The study included bacterial samples from 18 lakes, ponds, and reservoirs in various stages of recovery from acidification in the Adirondack mountain region of New York state.

For the current study, 31 physical and chemical parameters were examined for each water body, ranging from water clarity and temperature to aluminum and hydraulic retention time for a one-year period. Clone “libraries” representing the bacteria were developed from the lake samples and analyzed. The researchers found that the species diversity in acid-impacted Adirondack lakes were similar to bacterial communities in other, non-impacted freshwater systems

The impacts of acidity on most types of bacteria, including the freshwater classes of Actinobacteria and Betaproteobacteria, were found to be indirect, and population levels appeared more directly linked to a combination of acidity along with other environmental factors such as lake depth and carbon content. Several less abundant types of bacteria, including a species known as Alphaproteobacteria, were strongly correlated to acidity and might someday be used as indicators of lake recovery from acidification, according to Nierzwicki-Bauer.

The researchers are in the process of expanding their study to include an additional 13 Adirondack lakes. They also plan to further investigate the role of specific types of bacteria in the ecosystem to better understand why certain bacteria are so directly impacted by acidity while others appear relatively unaffected.

About Rensselaer
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The university offers bachelor’s, master’s, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Gabrielle DeMarco | newswise
Further information:
http://www.rpi.edu
http://www.newswise.com

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>