Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Database Shows Effects of Acid Rain on Microorganisms in Adirondack Lakes

25.06.2008
Researchers have long known that acid rain can severely decrease the diversity of plant and animal communities in fresh water lakes and ponds. However, little is known about how microscopic bacteria, which form the foundation of freshwater ecosystems, respond to acidification. To address this knowledge gap, researchers have developed one of the most comprehensive databases in existence on the impacts of acid rain at the foundation of the biological community.

Prior to the federal Clean Air Act, unhindered industrial emissions were released into the air throughout the Midwestern and Eastern United States for decades. Many of those harmful chemicals came right back down to earth in the form of acid rain, a chemical concoction that includes nitric and sulfuric acid.

Researchers have long known that acid rain can severely decrease the diversity of plant and animal communities in fresh water lakes and ponds. However, little is known about how microscopic bacteria, which form the foundation of freshwater ecosystems, respond to acidification.

To address this knowledge gap, researchers at the Darrin Fresh Water Institute of Rensselaer Polytechnic Institute have developed one of the most comprehensive databases in existence on the impacts of acid rain at the foundation of the biological community.

The team found a general link between increased acidity and decreased bacterial diversity, but surprisingly, most of the dominant species of bacteria were not directly impacted by acidification. However, some rarer types of bacterial populations were significantly or strongly correlated to acidity, rising and falling with fluctuations in water pH. The findings could eventually allow scientists to use these bacteria as indicators of lake recovery, according to Sandra Nierzwicki-Bauer, director of the Darrin Fresh Water Institute and professor of biology.

The research is part of a much broader study on how Adirondack lakes are recovering from the impacts of acidification. “Thanks in large part to the federal Clean Air Act and increased state focus on improving air quality here in New York, we are seeing a number of these lakes on a trajectory to recovery, but up until now we have had little understanding of the changing biodiversity of microbial communities within the impacted lakes as they recover,” Nierzwicki-Bauer said. “I hope this study will help other scientists expand on the research and use this data to uncover additional information on how acid-impacted lakes and their ecosystems are recovering and how we can hasten that process.”

The study was published in a recent edition of the journal Applied and Environmental Microbiology and was undertaken in partnership with the Skidaway Institute of Oceanography. The study is part of what has been a 12-year analysis on the recovery of Adirondack lakes from the effects of acid rain funded by the U.S. Environmental Protection Agency’s Adirondack Effects Assessment Program (AEAP). The study included bacterial samples from 18 lakes, ponds, and reservoirs in various stages of recovery from acidification in the Adirondack mountain region of New York state.

For the current study, 31 physical and chemical parameters were examined for each water body, ranging from water clarity and temperature to aluminum and hydraulic retention time for a one-year period. Clone “libraries” representing the bacteria were developed from the lake samples and analyzed. The researchers found that the species diversity in acid-impacted Adirondack lakes were similar to bacterial communities in other, non-impacted freshwater systems

The impacts of acidity on most types of bacteria, including the freshwater classes of Actinobacteria and Betaproteobacteria, were found to be indirect, and population levels appeared more directly linked to a combination of acidity along with other environmental factors such as lake depth and carbon content. Several less abundant types of bacteria, including a species known as Alphaproteobacteria, were strongly correlated to acidity and might someday be used as indicators of lake recovery from acidification, according to Nierzwicki-Bauer.

The researchers are in the process of expanding their study to include an additional 13 Adirondack lakes. They also plan to further investigate the role of specific types of bacteria in the ecosystem to better understand why certain bacteria are so directly impacted by acidity while others appear relatively unaffected.

About Rensselaer
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The university offers bachelor’s, master’s, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Gabrielle DeMarco | newswise
Further information:
http://www.rpi.edu
http://www.newswise.com

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>