Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weather, stomach bugs and climate change: Refining the model

06.06.2008
Monitoring extreme weather, such as periods of high temperature, is one way to predict the timing and intensity of infectious diseases like cryptosporidiosis, an intestinal disease that causes upset stomach and diarrhea.

Two public health researchers have created a model that takes into account weather and other factors that affect the number of people who will fall ill during an outbreak. With this model they show that the risk of weather-sensitive diseases may increase with climate variability or even gradual climate change. Better understanding of the ways in which climate can affect disease will help researchers forecast infectious disease outbreaks and design early warning systems.

In a paper published in Environmetrics, first author Elena Naumova, PhD, associate professor in the Department of Public Health and Family Medicine at Tufts University School of Medicine in Boston and co-author Ian MacNeill, PhD, professor emeritus, in the Department of Statistics & Actuarial Sciences at the University of Western Ontario, introduce a model that takes into consideration the lag time between exposure and infection. The authors then demonstrate this model by analyzing the association between high temperature and daily incidence of cryptosporidiosis in Massachusetts from 1996-2001.

In this new model, Naumova and MacNeill consider several factors: outdoor temperature, base level of a disease in a community before an outbreak, the number of people infected throughout the course of the outbreak, and incubation time of a given disease. "It is this last factor that affects what we call the lag time," says Naumova, "infected individuals go on to infect others, and current models may be underestimating the number of cases in an outbreak by failing to account for lag time."

"To consider such time-distributed lags is a challenging task given that the length of a latent period varies from hours to months and depends on the type of pathogen, individual susceptibility to the pathogen, dose of exposure, route of transmission and many other factors," write the authors. "Using data from the Massachusetts Department of Public Health, we demonstrated that the number of cases of cryptosporidiosis increased and can be sustained over the 21 days following a temperature spike exceeding 90 degrees Fahrenheit. This model is able to provide an accurate estimate of cases of cryptosporidiosis that can be attributed to both lag time and the weather," says Naumova.

"We hope that this model can be expanded upon by public health researchers to gain insight into how disease is spread, and what populations are most susceptible. Our goal is to tailor this model for specific climate regions, infections and at-risk subpopulations, and look for patterns between outbreaks. Continually refining our models will enable us to assess the effects of climate change on human health and make better projections about future infectious disease outbreaks," says Naumova.

This work builds on Naumova's previous research developing mathematical models to predict, more accurately, the timing, severity and impact of diseases. Naumova, a biostatistician, is the director of the Tufts Initiative for the Forecasting and Modeling of Infectious Diseases (Tufts InForMID). This group aims to improve biomedical research by developing innovative computational tools in order to assist life science researchers, public health professionals, and policy makers. Her research focus is developing tools for time series and longitudinal data to study disease surveillance, exposure assessment, and studies of growth.

Siobhan Gallagher | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke

29.05.2017 | Life Sciences

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>