Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Weather, stomach bugs and climate change: Refining the model

Monitoring extreme weather, such as periods of high temperature, is one way to predict the timing and intensity of infectious diseases like cryptosporidiosis, an intestinal disease that causes upset stomach and diarrhea.

Two public health researchers have created a model that takes into account weather and other factors that affect the number of people who will fall ill during an outbreak. With this model they show that the risk of weather-sensitive diseases may increase with climate variability or even gradual climate change. Better understanding of the ways in which climate can affect disease will help researchers forecast infectious disease outbreaks and design early warning systems.

In a paper published in Environmetrics, first author Elena Naumova, PhD, associate professor in the Department of Public Health and Family Medicine at Tufts University School of Medicine in Boston and co-author Ian MacNeill, PhD, professor emeritus, in the Department of Statistics & Actuarial Sciences at the University of Western Ontario, introduce a model that takes into consideration the lag time between exposure and infection. The authors then demonstrate this model by analyzing the association between high temperature and daily incidence of cryptosporidiosis in Massachusetts from 1996-2001.

In this new model, Naumova and MacNeill consider several factors: outdoor temperature, base level of a disease in a community before an outbreak, the number of people infected throughout the course of the outbreak, and incubation time of a given disease. "It is this last factor that affects what we call the lag time," says Naumova, "infected individuals go on to infect others, and current models may be underestimating the number of cases in an outbreak by failing to account for lag time."

"To consider such time-distributed lags is a challenging task given that the length of a latent period varies from hours to months and depends on the type of pathogen, individual susceptibility to the pathogen, dose of exposure, route of transmission and many other factors," write the authors. "Using data from the Massachusetts Department of Public Health, we demonstrated that the number of cases of cryptosporidiosis increased and can be sustained over the 21 days following a temperature spike exceeding 90 degrees Fahrenheit. This model is able to provide an accurate estimate of cases of cryptosporidiosis that can be attributed to both lag time and the weather," says Naumova.

"We hope that this model can be expanded upon by public health researchers to gain insight into how disease is spread, and what populations are most susceptible. Our goal is to tailor this model for specific climate regions, infections and at-risk subpopulations, and look for patterns between outbreaks. Continually refining our models will enable us to assess the effects of climate change on human health and make better projections about future infectious disease outbreaks," says Naumova.

This work builds on Naumova's previous research developing mathematical models to predict, more accurately, the timing, severity and impact of diseases. Naumova, a biostatistician, is the director of the Tufts Initiative for the Forecasting and Modeling of Infectious Diseases (Tufts InForMID). This group aims to improve biomedical research by developing innovative computational tools in order to assist life science researchers, public health professionals, and policy makers. Her research focus is developing tools for time series and longitudinal data to study disease surveillance, exposure assessment, and studies of growth.

Siobhan Gallagher | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>