Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weather, stomach bugs and climate change: Refining the model

06.06.2008
Monitoring extreme weather, such as periods of high temperature, is one way to predict the timing and intensity of infectious diseases like cryptosporidiosis, an intestinal disease that causes upset stomach and diarrhea.

Two public health researchers have created a model that takes into account weather and other factors that affect the number of people who will fall ill during an outbreak. With this model they show that the risk of weather-sensitive diseases may increase with climate variability or even gradual climate change. Better understanding of the ways in which climate can affect disease will help researchers forecast infectious disease outbreaks and design early warning systems.

In a paper published in Environmetrics, first author Elena Naumova, PhD, associate professor in the Department of Public Health and Family Medicine at Tufts University School of Medicine in Boston and co-author Ian MacNeill, PhD, professor emeritus, in the Department of Statistics & Actuarial Sciences at the University of Western Ontario, introduce a model that takes into consideration the lag time between exposure and infection. The authors then demonstrate this model by analyzing the association between high temperature and daily incidence of cryptosporidiosis in Massachusetts from 1996-2001.

In this new model, Naumova and MacNeill consider several factors: outdoor temperature, base level of a disease in a community before an outbreak, the number of people infected throughout the course of the outbreak, and incubation time of a given disease. "It is this last factor that affects what we call the lag time," says Naumova, "infected individuals go on to infect others, and current models may be underestimating the number of cases in an outbreak by failing to account for lag time."

"To consider such time-distributed lags is a challenging task given that the length of a latent period varies from hours to months and depends on the type of pathogen, individual susceptibility to the pathogen, dose of exposure, route of transmission and many other factors," write the authors. "Using data from the Massachusetts Department of Public Health, we demonstrated that the number of cases of cryptosporidiosis increased and can be sustained over the 21 days following a temperature spike exceeding 90 degrees Fahrenheit. This model is able to provide an accurate estimate of cases of cryptosporidiosis that can be attributed to both lag time and the weather," says Naumova.

"We hope that this model can be expanded upon by public health researchers to gain insight into how disease is spread, and what populations are most susceptible. Our goal is to tailor this model for specific climate regions, infections and at-risk subpopulations, and look for patterns between outbreaks. Continually refining our models will enable us to assess the effects of climate change on human health and make better projections about future infectious disease outbreaks," says Naumova.

This work builds on Naumova's previous research developing mathematical models to predict, more accurately, the timing, severity and impact of diseases. Naumova, a biostatistician, is the director of the Tufts Initiative for the Forecasting and Modeling of Infectious Diseases (Tufts InForMID). This group aims to improve biomedical research by developing innovative computational tools in order to assist life science researchers, public health professionals, and policy makers. Her research focus is developing tools for time series and longitudinal data to study disease surveillance, exposure assessment, and studies of growth.

Siobhan Gallagher | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>