Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weather, stomach bugs and climate change: Refining the model

06.06.2008
Monitoring extreme weather, such as periods of high temperature, is one way to predict the timing and intensity of infectious diseases like cryptosporidiosis, an intestinal disease that causes upset stomach and diarrhea.

Two public health researchers have created a model that takes into account weather and other factors that affect the number of people who will fall ill during an outbreak. With this model they show that the risk of weather-sensitive diseases may increase with climate variability or even gradual climate change. Better understanding of the ways in which climate can affect disease will help researchers forecast infectious disease outbreaks and design early warning systems.

In a paper published in Environmetrics, first author Elena Naumova, PhD, associate professor in the Department of Public Health and Family Medicine at Tufts University School of Medicine in Boston and co-author Ian MacNeill, PhD, professor emeritus, in the Department of Statistics & Actuarial Sciences at the University of Western Ontario, introduce a model that takes into consideration the lag time between exposure and infection. The authors then demonstrate this model by analyzing the association between high temperature and daily incidence of cryptosporidiosis in Massachusetts from 1996-2001.

In this new model, Naumova and MacNeill consider several factors: outdoor temperature, base level of a disease in a community before an outbreak, the number of people infected throughout the course of the outbreak, and incubation time of a given disease. "It is this last factor that affects what we call the lag time," says Naumova, "infected individuals go on to infect others, and current models may be underestimating the number of cases in an outbreak by failing to account for lag time."

"To consider such time-distributed lags is a challenging task given that the length of a latent period varies from hours to months and depends on the type of pathogen, individual susceptibility to the pathogen, dose of exposure, route of transmission and many other factors," write the authors. "Using data from the Massachusetts Department of Public Health, we demonstrated that the number of cases of cryptosporidiosis increased and can be sustained over the 21 days following a temperature spike exceeding 90 degrees Fahrenheit. This model is able to provide an accurate estimate of cases of cryptosporidiosis that can be attributed to both lag time and the weather," says Naumova.

"We hope that this model can be expanded upon by public health researchers to gain insight into how disease is spread, and what populations are most susceptible. Our goal is to tailor this model for specific climate regions, infections and at-risk subpopulations, and look for patterns between outbreaks. Continually refining our models will enable us to assess the effects of climate change on human health and make better projections about future infectious disease outbreaks," says Naumova.

This work builds on Naumova's previous research developing mathematical models to predict, more accurately, the timing, severity and impact of diseases. Naumova, a biostatistician, is the director of the Tufts Initiative for the Forecasting and Modeling of Infectious Diseases (Tufts InForMID). This group aims to improve biomedical research by developing innovative computational tools in order to assist life science researchers, public health professionals, and policy makers. Her research focus is developing tools for time series and longitudinal data to study disease surveillance, exposure assessment, and studies of growth.

Siobhan Gallagher | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>