Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique Acoustic System Protects Manatees from Injuries and Death

06.06.2008
Researchers at Harbor Branch Oceanographic Institute at Florida Atlantic University have developed and improved upon a unique acoustic system designed to keep manatees from being injured or killed by flood gates and boat locks.

Locks are used on sections of a canal or river that may be closed off by gates to control the water level to enable the raising and lowering of boats passing through.

The “Manatee Acoustic Detection Sensor Protection System” is composed of an array of unique acoustic transmitters and receivers that provide non-contact detection of manatees as they pass through the gates of the lock. When a manatee blocks the acoustic beams, which they cannot hear, the gates stop and remain open long enough to allow them to pass through safely.

Harbor Branch recently received a $5.8 million federal contract from the U.S. Army Corps of Engineers to install the system in southern Florida on the six navigation locks around Lake Okeechobee. Among these are Moore Haven lock at Clewiston and the Port Mayaca lock where the St. Lucie River meets Lake Okeechobee, a waterway that links the Atlantic Ocean to the Gulf of Mexico.

Renowned as a hub of aquatic research, engineers at Harbor Branch designed manatee protective pressure systems more than a decade ago for canal lift gates used by the South Florida Water Management District. Last summer, the Harbor Branch manatee protection team installed the system on the Ortona Lock on the Caloosahatchee River which is part of the Okeechobee Waterway System operated by the U.S. Army Corps of Engineers. The Corps wanted a new system for lock gates that swing open too fast and sent out a public request for bids for replacement—Harbor Branch’s high frequency sound system won.

“This summer we’ll be entering into phase 2 of the second year of this important project and we will begin assisting with the installation of the devices at six locks in Lake Okeechobee,” said Larry Taylor, project manager for manatee protection systems at Harbor Branch. “We installed the prototype acoustic system about ten years ago in the St. Lucie lock. Since then, we have redesigned the system with underwater sensor cartridges. The device is now smaller, cheaper, faster and easier to operate.”

Aside from watercraft collisions, the highest incidence of human-caused mortality to manatees is due to entrapment in floodgates and canal locks. According to the Florida Fish and Wildlife Conservation Commission, locks or gates caused at least 191 manatee deaths statewide since 1974. Manatees live in shallow, calm rivers, estuaries, saltwater bays, canals, and coastal areas. They move from fresh to salt water easily and the Florida manatee frequents most areas of Florida. It is estimated that there are approximately 3,000 Florida manatees in existence today.

“We are extremely proud to have received this federal contract to continue our efforts in safeguarding manatees,” said Dr. Shirley Pomponi, executive director at Harbor Branch. “This project is very important to the Army Corps of Engineers and is part of years-long efforts on their part to have prevention measures in place.”

Harbor Branch Oceanographic Institute at FAU is one of the world's leading oceanographic research organizations dedicated to exploring the earth's oceans, estuaries and coastal regions for the benefit of mankind. Focus areas at Harbor Branch include aquaculture, biomedical marine research, engineering research and development, marine operations, marine science, and marine mammal research and conservation. Situated on 530 acres located along the Indian River Lagoon near Fort Pierce, Florida, Harbor Branch houses some of the world’s leading ocean science laboratories. To carry out its work, Harbor Branch operates an ocean going research vessel and submersibles capable of diving to, and working at, depths of 3,000 ft.

Florida Atlantic University opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 26,000 undergraduate and graduate students on seven campuses strategically located along 150 miles of Florida's southeastern coastline. Building on its rich tradition as a teaching university, with a world-class faculty, FAU hosts ten colleges: College of Architecture, Urban & Public Affairs, Dorothy F. Schmidt College of Arts & Letters, the Charles E. Schmidt College of Biomedical Science, the Barry Kaye College of Business, the College of Education, the College of Engineering & Computer Science, the Harriet L. Wilkes Honors College, the Graduate College, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science.

Gisele Galoustian | alfa
Further information:
http://www.hboi.fau.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>