Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sustainable Management of Tropical Peatland

14.05.2008
Peatlands are the most extensive natural wetland ecosystems in South East Asia.

They play an important role in climate regulation. Peatland reclamation for agriculture disrupts this role. UNIMAS is currently working on a sustainable management of the peatlands in Sarawak that would benefit the ecosystem and its dependent communities.

Peatlands are the most extensive natural wetland ecosystems in South East Asia covering some 30 million ha of which 1.7 million ha are found in the coastal lowlands of Sarawak. They are well recognised for their roles as buffers against flood, reservoirs of biodiversity, water extraction; and to the human industry, as provider of timber and non-timber products.

Peatlands are carbon stores. This gives them a role in climate regulation, and thus, global importance in climate change. Socioeconomic needs coupled with limited suitable lands, however, have led to the conversion of peatlands (or peat swamp forests) to other uses, especially for agriculture.

Conversion (or reclamation) of peatland for agriculture uses involve drainage of the waterlogged peatlands. The drainage inevitably leads to surface subsidence; brought about not only by consolidation of peat materials, but also by loss of carbon through carbon dioxide (CO2) emission as the peat air contents increases. The consequence is an immediate negative impact on the environment due to excessive emission of carbon dioxide and other greenhouse gases such as nitric oxide.

Surface subsidence also sets a limit to its agricultural life and productivity. As the peat surface eventually subsides to the same level as the natural groundwater table of the surrounding areas, it leads to increased flooding frequency in settlements and agricultural areas on the peatlands. The net effect is a gradual loss of peatlands as evident from the shrinkage of peatland areas in Sabah (86,000 ha in 1989 to 46,000 ha in 1999).

A multidisciplinary research team, head by Prof. Wan Sulaiman Wan Harun is currently working on a sustainable management of tropical peatland research programme: a comprehensive study of the peatlands in Sarawak which covers the ecology and biodiversity of peat swamp forests, as well as characterisation of the peat soils and the sustainable use of the peatlands.

The research looks at the impact of peat swamp forest clearance and drainage for agriculture, and the mitigation of the impacts with particular emphasis on minimisation of surface subsidence to extend its agriculture or agronomic life, and reduce greenhouse gas emissions. This article highlights four aspects of the programme.

Natural sink for pollutants

The humic substances that made up peatland is a natural sink for pollutants. Here, a study is conducted to determine the chemical characteristics of humic substances in Sarawak's peat, and relate their molecular structural features with pollutant complexing/trapping potentials. Laboratory analyses and comparisons with data from published literatures on humic substances suggest that Sarawak's peat has a strong complexing capability.

Peat subsidence and carbon loss

The agronomic life of peatlands can be sustained/prolonged by adopting a crop mix that will maximise carbon assimilation through rapid vegetative growth, followed by appropriate surface residue management under controlled drainage. An experiment was conducted on a plantation site to explore the possible use of sago palm residues to partially offset or mitigate peat subsidence. And the findings suggest that one strategy to mitigate the impact of peat subsidence and carbon loss is to sustain high crop production levels and retain on site the maximum amount possible of the palm residues.

Large-scale planting on deep peat

Sago has traditionally been grown on mineral soils and shallow peat in a low-input production system. Large-scale (commercial) plantings of sago on deep peat face major production constraints, in particular, palms inability to develop trunks. Studies are currently being conducted to overcome the various production constraints and to gain a comprehensive and deeper understanding of the palm species as an agricultural crop.

Local community livelihood

Almost all the peatlands of Sarawak are located in populated coastal lowland. Management of the peatlands, therefore, need to include how the local communities on and around these peatlands can sustain their livelihood. A case study is being conducted to determine the socio-economic conditions and options for sustaining the livelihood of the communities living on one of the peatland areas. Strategies and recommendations are being formulated to further develop and sustain the livelihood of the local communities to prevent further degradation to the peatlands they inhabit.

Resni Mona | ResearchSEA
Further information:
http://www.unimas.my
http://www.researchsea.com

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>