Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists plan to unlock oil reserves - with microbes!

British and Canadian scientists expect to begin trials next month (May) to find out whether microbes can unlock the vast amount of energy trapped in the world's unrecoverable heavy oil deposits.

An estimated six trillion barrels of oil remain underground because the oil has become either solid or too thick to be brought to the surface at economic cost by conventional means.

However, scientists at Newcastle University, England, and the University of Calgary, Canada, have set up a company, Profero Energy Inc, to build on their recent research, which demonstrated how naturally-occurring microbes convert oil to natural gas (methane) over tens of millions of years.

The company is preparing to move on-site to begin pumping a special mixture of nutrients, dissolved in water, down an oil well above exhausted oil deposits in western Canada. If the scientists' calculations are correct, natural gas should flow back out, as the microbes thrive on the nutrients, multiply, and digest the tar-like oil at a greatly increased rate.

A major advance in the understanding of the way that petrolium is degraded by microbes underground was made by a research team, led by Professor Ian Head and Dr Martin Jones of Newcastle University and Professor Steve Larter, who works at both Newcastle University and the University of Calgary, which published a ground-breaking paper in January this year in the international academic journal, Nature.

The research provided the answers to a long-standing geological puzzle by revealing that two types of microbe found in environments containing crude oil were responsible for converting it into methane. First, bacteria called Syntrophus digest the oil and produce hydrogen gas and acetic acid (the pungent ingredient of vinegar). Secondly, methanogens, a type of organism known as archaea, combine the hydrogen with carbon dioxide to produce methane.

The research team also discovered that the geological timescale of this process could be shortened to a few hundred days in the laboratory by feeding the oil-based microbes with special nutrients. They reasoned that similar results could be obtained in an oilfield in a timescale of a year to tens of years.

Professor Head, an environmental microbiologist in the Institute for Research on Environment and Sustainability at Newcastle University, commented: 'The research we published was important scientifically because it settled an argument that has been running for decades about how oil is degraded in oilfields; it turns out it is converted to natural gas.

'The discovery of how this process works could have major implications for the oil and gas industry because we think we will be able to extend the 20-30 year operating lifespan of a typical oil reservoir.'

In theory, the technology could also be used to produce hydrogen gas from inaccessible oil reserves, he said. Although no market yet exists for this clean fuel, one is likely to develop in the greener world of the future.

Michael Warwicker | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>