Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists plan to unlock oil reserves - with microbes!

30.04.2008
British and Canadian scientists expect to begin trials next month (May) to find out whether microbes can unlock the vast amount of energy trapped in the world's unrecoverable heavy oil deposits.

An estimated six trillion barrels of oil remain underground because the oil has become either solid or too thick to be brought to the surface at economic cost by conventional means.

However, scientists at Newcastle University, England, and the University of Calgary, Canada, have set up a company, Profero Energy Inc, to build on their recent research, which demonstrated how naturally-occurring microbes convert oil to natural gas (methane) over tens of millions of years.

The company is preparing to move on-site to begin pumping a special mixture of nutrients, dissolved in water, down an oil well above exhausted oil deposits in western Canada. If the scientists' calculations are correct, natural gas should flow back out, as the microbes thrive on the nutrients, multiply, and digest the tar-like oil at a greatly increased rate.

A major advance in the understanding of the way that petrolium is degraded by microbes underground was made by a research team, led by Professor Ian Head and Dr Martin Jones of Newcastle University and Professor Steve Larter, who works at both Newcastle University and the University of Calgary, which published a ground-breaking paper in January this year in the international academic journal, Nature.

The research provided the answers to a long-standing geological puzzle by revealing that two types of microbe found in environments containing crude oil were responsible for converting it into methane. First, bacteria called Syntrophus digest the oil and produce hydrogen gas and acetic acid (the pungent ingredient of vinegar). Secondly, methanogens, a type of organism known as archaea, combine the hydrogen with carbon dioxide to produce methane.

The research team also discovered that the geological timescale of this process could be shortened to a few hundred days in the laboratory by feeding the oil-based microbes with special nutrients. They reasoned that similar results could be obtained in an oilfield in a timescale of a year to tens of years.

Professor Head, an environmental microbiologist in the Institute for Research on Environment and Sustainability at Newcastle University, commented: 'The research we published was important scientifically because it settled an argument that has been running for decades about how oil is degraded in oilfields; it turns out it is converted to natural gas.

'The discovery of how this process works could have major implications for the oil and gas industry because we think we will be able to extend the 20-30 year operating lifespan of a typical oil reservoir.'

In theory, the technology could also be used to produce hydrogen gas from inaccessible oil reserves, he said. Although no market yet exists for this clean fuel, one is likely to develop in the greener world of the future.

Michael Warwicker | alfa
Further information:
http://www.ncl.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>