Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Technological breakthrough in the fight to cut greenhouse gases

Scientists at Newcastle University, UK, have pioneered breakthrough technology in the fight to cut greenhouse gases.

The Newcastle University team, led by Michael North, Professor of Organic Chemistry, has developed a highly energy-efficient method of converting waste carbon dioxide (CO2) into chemical compounds known as cyclic carbonates.

The team estimates that the technology has the potential to use up to 48 million tonnes of waste CO2 per year, reducing the UK's emissions by about four per cent.

Cyclic carbonates are widely used in the manufacture of products including solvents, paint-strippers, biodegradable packaging, as well as having applications in the chemical industry. Cyclic carbonates also have potential for use in the manufacture of a new class of efficient anti-knocking agents in petrol. Anti-knocking agents make petrol burn better, increasing fuel efficiency and reducing CO2 emissions.

The conversion technique relies upon the use of a catalyst to force a chemical reaction between CO2 and an epoxide, converting waste CO2 into this cyclic carbonate, a chemical for which there is significant commercial demand.

The reaction between CO2 and epoxides is well known, but one which, until now, required a lot of energy, needing high temperatures and high pressures to work successfully. The current process also requires the use of ultra-pure CO2 , which is costly to produce.

The Newcastle team has succeeded in developing an exceptionally active catalyst, derived from aluminium, which can drive the reaction necessary to turn waste carbon dioxide into cyclic carbonates at room temperature and atmospheric pressure, vastly reducing the energy input required.

Professor North said: 'One of the main scientific challenges facing the human race in the 21st century is controlling global warming that results from increasing levels of carbon dioxide in the atmosphere.

'One solution to this problem, currently being given serious consideration, is carbon capture and storage, which involves concentrating and compressing CO2 and then storing it,' he said. 'However, long-term storage remains to be demonstrated'.

To date, alternative solutions for converting CO2 emissions into a useful product has required a process so energy intensive that they generate more CO2 than they consume.

Professor North compares the process developed by his team to that of a catalytic converter fitted to a car. 'If our catalyst could be employed at the source of high-concentration CO2 production, for example in the exhaust stream of a fossil-fuel power station, we could take out the carbon dioxide, turn it into a commercially-valuable product and at the same time eliminate the need to store waste CO2', he said.

Professor North believes that, once it is fully developed, the technology has the potential to utilise a significant amount of the UK's CO2 emissions every year.

'To satisfy the current market for cyclic carbonates, we estimate that our technology could use up to 18 million tonnes of waste CO2 per year, and a further 30 million tonnes if it is used as an anti-knocking agent.

'Using 48 million tonnes of waste CO2 would account for about four per cent* of the UK's CO2 emissions, which is a pretty good contribution from one technology,' commented Professor North.

The technique has been proven to work successfully in the lab. Professor North and his team are currently carrying out further lab-based work to optimise the efficiency of the technology, following which they plan to scale-up to a pilot plant.

* Based on 2004 figures from the UN. Source: Wikipedia

Melanie Reed | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>