Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technological breakthrough in the fight to cut greenhouse gases

25.04.2008
Scientists at Newcastle University, UK, have pioneered breakthrough technology in the fight to cut greenhouse gases.

The Newcastle University team, led by Michael North, Professor of Organic Chemistry, has developed a highly energy-efficient method of converting waste carbon dioxide (CO2) into chemical compounds known as cyclic carbonates.

The team estimates that the technology has the potential to use up to 48 million tonnes of waste CO2 per year, reducing the UK's emissions by about four per cent.

Cyclic carbonates are widely used in the manufacture of products including solvents, paint-strippers, biodegradable packaging, as well as having applications in the chemical industry. Cyclic carbonates also have potential for use in the manufacture of a new class of efficient anti-knocking agents in petrol. Anti-knocking agents make petrol burn better, increasing fuel efficiency and reducing CO2 emissions.

The conversion technique relies upon the use of a catalyst to force a chemical reaction between CO2 and an epoxide, converting waste CO2 into this cyclic carbonate, a chemical for which there is significant commercial demand.

The reaction between CO2 and epoxides is well known, but one which, until now, required a lot of energy, needing high temperatures and high pressures to work successfully. The current process also requires the use of ultra-pure CO2 , which is costly to produce.

The Newcastle team has succeeded in developing an exceptionally active catalyst, derived from aluminium, which can drive the reaction necessary to turn waste carbon dioxide into cyclic carbonates at room temperature and atmospheric pressure, vastly reducing the energy input required.

Professor North said: 'One of the main scientific challenges facing the human race in the 21st century is controlling global warming that results from increasing levels of carbon dioxide in the atmosphere.

'One solution to this problem, currently being given serious consideration, is carbon capture and storage, which involves concentrating and compressing CO2 and then storing it,' he said. 'However, long-term storage remains to be demonstrated'.

To date, alternative solutions for converting CO2 emissions into a useful product has required a process so energy intensive that they generate more CO2 than they consume.

Professor North compares the process developed by his team to that of a catalytic converter fitted to a car. 'If our catalyst could be employed at the source of high-concentration CO2 production, for example in the exhaust stream of a fossil-fuel power station, we could take out the carbon dioxide, turn it into a commercially-valuable product and at the same time eliminate the need to store waste CO2', he said.

Professor North believes that, once it is fully developed, the technology has the potential to utilise a significant amount of the UK's CO2 emissions every year.

'To satisfy the current market for cyclic carbonates, we estimate that our technology could use up to 18 million tonnes of waste CO2 per year, and a further 30 million tonnes if it is used as an anti-knocking agent.

'Using 48 million tonnes of waste CO2 would account for about four per cent* of the UK's CO2 emissions, which is a pretty good contribution from one technology,' commented Professor North.

The technique has been proven to work successfully in the lab. Professor North and his team are currently carrying out further lab-based work to optimise the efficiency of the technology, following which they plan to scale-up to a pilot plant.

* Based on 2004 figures from the UN. Source: Wikipedia http://en.wikipedia.org/wiki/List_of_countries_by_carbon_dioxide_emissions

Melanie Reed | alfa
Further information:
http://www.ncl.ac.uk/press.office/press.release/content.phtml?ref=1209034169

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>