Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing levels of atmospheric CO2 cause a rise in ocean plankton calcification

21.04.2008
Increased carbon dioxide in the Earth's atmosphere is causing microscopic ocean plants to produce greater amounts of calcium carbonate (chalk) - with potentially wide ranging implications for predicting the cycling of carbon in the oceans and climate modelling.

That is the conclusion of an international team of scientists led by investigators based at the UK's National Oceanography Centre, Southampton and the University of Oxford, published in the journal, Science, on Friday, 18 April 2008.

Co lead-author, Dr M Debora Iglesias-Rodriguez, of the University of Southampton's School of Ocean and Earth Science at the National Oceanography Centre, Southampton said:

'This work contradicts previous findings and shows, for the first time, that calcification by phytoplankton could double by the end of this century. This is important because the majority of ocean calcification is carried out by coccolithophores such as Emiliania huxleyi and the amount of calcium carbonate produced at the ocean surface is known to have a direct influence on levels of atmospheric carbon dioxide.'

Previously, the fact that carbon dioxide made the oceans more acidic was thought to be harmful to all organisms that produce calcium carbonate - for example, corals and coccolithophores (a group of calcium carbonate-producing phytoplankton). However, observations in the laboratory and the deep ocean have shown that the calcification of coccolithophores increases significantly with rising carbon dioxide (CO2) levels, produced by human activity.

When coccolithophores make plates of calcium carbonate they also release carbon dioxide. But because these organisms photosynthesize they also consume CO2. It is the balance between calcification - which produces carbon dioxide - and the consumption of CO2 by photosynthesis that will determine whether coccolithophores act as a "sink" (absorbing CO2) or as a source of CO2 to the atmosphere. These results, based on experiments that directly replicate how the oceans take up carbon dioxide, show that the rise in CO2 produced by increased calcification is mitigated by its removal through increased photosynthesis, with a net effect that is unlikely to either contribute greatly or significantly reduce the rise in atmospheric CO2.

Co-lead author, PhD student Paul Halloran based at the Department of Earth Sciences, University of Oxford said:

'Our research has also revealed that, over the past 220 years, coccolithophores have increased the mass of calcium carbonate they each produce by around 40 per cent. These results are in agreement with previous observations that coccolithophores are abundant through past periods of ocean acidification such as 55 million years ago - the Paleocene Eocene Thermal Maximum.

Dr Iglesias-Rodriguez from the University of Southampton continued: 'Our widely held assumption that the acidification of the oceans causes a decrease in calcification in all coccolithophores needs to be reappraised in the light of our findings. Our data reveal that these microscopic organisms, which are major players in the Earth's cycling of carbon, have been responding to climate change by increasing the size of the cells and their calcium carbonate plates.

'What is unclear from our research is exactly what will be the effect of ocean acidification in natural ecosystems and how the response of calcification in the oceans will affect the levels of carbon dioxide in the atmosphere. Our next step is to conduct field research, particularly in the most susceptible waters to ocean acidification, such as Antarctic waters.'

The main conclusions of this work are:

* Ocean acidification remains one of the most important environmental and societal concerns of the 21st century

* Contrary to previous suggestions of decreased calcification under high CO2 levels, which could potentially act as a negative feedback on atmospheric CO2 levels, the observed increase in both calcification (CO2 outgassing) and photosynthesis (CO2 ingassing) suggest that future coccolithophore populations will neither greatly ameliorate nor exacerbate atmospheric CO2 rise.

* These results have important implications in palaeoreconstruction and in forecasting the future marine carbon cycle and climate.

* This work *does not* suggest that the observed increase in calcification will be followed by a positive feedback of CO2 to the atmosphere.

* The present work shows the physiological response of an important component of the food chain but the response of the natural communities remains an open question. There is an urgent need to conduct these studies in the most vulnerable ecosystems to ocean acidification, such as Antarctic waters.

* This work is in agreement with the observed resilience of coccolithophores in the geological record. However other important marine calcifiers, such as corals, remain vulnerable to the increasing CO2 levels. The coccolithophores are unusual among cacifiers in that they calcify inside the cells, and therefore there is a strong biological control compared to corals that calcify externally. Concern about the fate of corals and other calcifiers in high CO2 scenarios still remains.

ENDS

For more information contact the NOCS Press Officer Kim Marshall-Brown
on +44 (0)23 8059 6170 Email: kxm@noc.soton.ac.uk
University of Oxford Press Officer Pete Wilton
on +44 (0)1865 283877, Email: pete.wilton@admin.ox.ac.uk
Author contacts: Dr Iglesias-Rodriguez on +44 (0)23 8059 3240
Email: dir@noc.soton.ac.uk
Paul Halloran: +44 (0)1865 282116

Sarah Watts | alfa
Further information:
http://www.soton.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>