Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing levels of atmospheric CO2 cause a rise in ocean plankton calcification

21.04.2008
Increased carbon dioxide in the Earth's atmosphere is causing microscopic ocean plants to produce greater amounts of calcium carbonate (chalk) - with potentially wide ranging implications for predicting the cycling of carbon in the oceans and climate modelling.

That is the conclusion of an international team of scientists led by investigators based at the UK's National Oceanography Centre, Southampton and the University of Oxford, published in the journal, Science, on Friday, 18 April 2008.

Co lead-author, Dr M Debora Iglesias-Rodriguez, of the University of Southampton's School of Ocean and Earth Science at the National Oceanography Centre, Southampton said:

'This work contradicts previous findings and shows, for the first time, that calcification by phytoplankton could double by the end of this century. This is important because the majority of ocean calcification is carried out by coccolithophores such as Emiliania huxleyi and the amount of calcium carbonate produced at the ocean surface is known to have a direct influence on levels of atmospheric carbon dioxide.'

Previously, the fact that carbon dioxide made the oceans more acidic was thought to be harmful to all organisms that produce calcium carbonate - for example, corals and coccolithophores (a group of calcium carbonate-producing phytoplankton). However, observations in the laboratory and the deep ocean have shown that the calcification of coccolithophores increases significantly with rising carbon dioxide (CO2) levels, produced by human activity.

When coccolithophores make plates of calcium carbonate they also release carbon dioxide. But because these organisms photosynthesize they also consume CO2. It is the balance between calcification - which produces carbon dioxide - and the consumption of CO2 by photosynthesis that will determine whether coccolithophores act as a "sink" (absorbing CO2) or as a source of CO2 to the atmosphere. These results, based on experiments that directly replicate how the oceans take up carbon dioxide, show that the rise in CO2 produced by increased calcification is mitigated by its removal through increased photosynthesis, with a net effect that is unlikely to either contribute greatly or significantly reduce the rise in atmospheric CO2.

Co-lead author, PhD student Paul Halloran based at the Department of Earth Sciences, University of Oxford said:

'Our research has also revealed that, over the past 220 years, coccolithophores have increased the mass of calcium carbonate they each produce by around 40 per cent. These results are in agreement with previous observations that coccolithophores are abundant through past periods of ocean acidification such as 55 million years ago - the Paleocene Eocene Thermal Maximum.

Dr Iglesias-Rodriguez from the University of Southampton continued: 'Our widely held assumption that the acidification of the oceans causes a decrease in calcification in all coccolithophores needs to be reappraised in the light of our findings. Our data reveal that these microscopic organisms, which are major players in the Earth's cycling of carbon, have been responding to climate change by increasing the size of the cells and their calcium carbonate plates.

'What is unclear from our research is exactly what will be the effect of ocean acidification in natural ecosystems and how the response of calcification in the oceans will affect the levels of carbon dioxide in the atmosphere. Our next step is to conduct field research, particularly in the most susceptible waters to ocean acidification, such as Antarctic waters.'

The main conclusions of this work are:

* Ocean acidification remains one of the most important environmental and societal concerns of the 21st century

* Contrary to previous suggestions of decreased calcification under high CO2 levels, which could potentially act as a negative feedback on atmospheric CO2 levels, the observed increase in both calcification (CO2 outgassing) and photosynthesis (CO2 ingassing) suggest that future coccolithophore populations will neither greatly ameliorate nor exacerbate atmospheric CO2 rise.

* These results have important implications in palaeoreconstruction and in forecasting the future marine carbon cycle and climate.

* This work *does not* suggest that the observed increase in calcification will be followed by a positive feedback of CO2 to the atmosphere.

* The present work shows the physiological response of an important component of the food chain but the response of the natural communities remains an open question. There is an urgent need to conduct these studies in the most vulnerable ecosystems to ocean acidification, such as Antarctic waters.

* This work is in agreement with the observed resilience of coccolithophores in the geological record. However other important marine calcifiers, such as corals, remain vulnerable to the increasing CO2 levels. The coccolithophores are unusual among cacifiers in that they calcify inside the cells, and therefore there is a strong biological control compared to corals that calcify externally. Concern about the fate of corals and other calcifiers in high CO2 scenarios still remains.

ENDS

For more information contact the NOCS Press Officer Kim Marshall-Brown
on +44 (0)23 8059 6170 Email: kxm@noc.soton.ac.uk
University of Oxford Press Officer Pete Wilton
on +44 (0)1865 283877, Email: pete.wilton@admin.ox.ac.uk
Author contacts: Dr Iglesias-Rodriguez on +44 (0)23 8059 3240
Email: dir@noc.soton.ac.uk
Paul Halloran: +44 (0)1865 282116

Sarah Watts | alfa
Further information:
http://www.soton.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>