Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Massive study of Madagascar wildlife released

11.04.2008
Researchers create unprecedented blueprint for conservation

Using data from thousands of species of lemurs, frogs, geckos, butterflies, ants, and plants, scientists from the Bronx Zoo-based Wildlife Conservation Society, University of California, Berkeley and other organizations have completed an analytical colossus for Madagascar that will guide plans to safeguard the island’s unique natural heritage. The massive study is the cover story in the most recent edition of Science.


A stump-tailed chameleon from Madagascar.

The study is unprecedented in terms of not only the number of species examined (some 2,315 species in six groups), but also because of the project’s scale and resolution. The biodiversity, climate and habitat of the entire 226,657 square-mile island, which is nearly a third larger than the state of California, were examined. The maps generated from the data analyses have a resolution of less than a square kilometer.

“While some of the key areas of biodiversity are under protection, many are not. This study will help direct conservation plans to help protect the most species possible, with special consideration given to those animals and plants that are most endangered,” said the study’s lead co-author Dr. Claire Kremen, an associate conservationist with the Wildlife Conservation Society and UC Berkeley assistant professor.

Unlike conservation projects that only focus on one or a handful of species to identify conservation priorities, this study used a number of new techniques to identify areas most important for saving the highest percentage of fauna and flora. The task was made difficult by the complex patterns of distribution for the island’s many unique plants and animals, many of which do not overlap. To address the challenge, researchers started with data on all species in the six groups, such as distribution, conservation status, and other factors. They then added data on habitat suitability from remote sensing images from satellites, and several layers of climatic information including average monthly temperature and rainfall.

The result of the study: a data-driven map that highlights the most important areas to protect. While the analysis emphasized the importance of protecting an enormous sweep of species of several groups, the model also was tailored to afford greater priority to species that have suffered significant range reductions between the years of 1950 to 2000. For example, two types of lemurs that were given higher ratings due to range reductions were the Coquerel’s sifaka (listed as Critically Endangered by IUCN) and the Decken’s sifaka (listed as Vulnerable).

On a national level, the study will help the Malagasy government reach a commitment made at the World Parks Congress in 2003 when President Marc Ravalomanana pledged to triple Madagascar’s protected area network to 10 percent of its land mass. To date, it has already established over six percent. The Wildlife Conservation Society has helped establish several protected areas including Masoala National Park, Makira Forest, and Sahamalaza Radma Islands National Park.

As natural habitats shrink in the face of increasing pressures from people, picking which areas to safeguard for the future is a huge challenge around the world but particularly in a poor country like Madagascar. This study is essential to Madagascar’s future – home to 2 percent of the world’s biodiversity and the home to the largest number of unique species. The analysis done in the study creates a science-based, practical roadmap for choosing the most important areas to protect.

The result of the analysis produces a conservation plan that will build upon the 6.3 percent of the island’s land mass under some form of natural reserve status, which currently protects some 70 percent of the species in the study. The study recommends how to expand the reserve system within the target of an additional 3.7 percent to boost the number of protected target species to 100 percent. Further, the study identifies completely new areas for conservation, specifically central plateau massifs and coastal forests that lack large forest blocks, but contain high degrees of species richness and uniqueness.

“This study will serve as a blueprint to help Madagascar achieve its ambitious conservation goals in the most effective way possible,” said Dr. Steven E. Sanderson, President and CEO of the Wildlife Conservation Society. “Madagascar has become a global leader in saving wildlife and wild lands, and we’re enormously proud to support the Malagasy commitment to protect its natural heritage. WCS has had a presence in Madagascar since 1990, and will soon bring the beauty of Madagascar and the value of our conservation work on the island through a fabulous new exhibit at our Bronx Zoo headquarters.”

The Wildlife Conservation Society, which operates field projects throughout the island nation, will open Madagascar! on June 19th – a new exhibit at its Bronx Zoo headquarters that showcases the country’s amazing biodiversity including lemurs, radiated tortoises and crocodiles. The exhibit will be a state-of-the-art energy efficient, green building, and the first land-marked building in New York to receive a Leadership in Energy and Environmental Design (LEED) gold certification.

“By combining huge data sets with the latest available software programs, we can identify conservation priorities with a high degree of precision on truly huge scales,” said lead co-author Alison Cameron of UC-Berkeley, who works closely with WCS and government agencies to bring about conservation in Madagascar. “Most importantly, we can export this model to other areas of critical conservation importance.”

The project is also a powerful example of how world class organizations that specialize in research, innovative thinking, and pragmatic field conservation can come together to make a significant contribution to the future of the worlds’ plant and animal life. The researchers used software specially developed for this project, in collaboration with a computer science researcher at AT&T, to estimate the complete range of each species.

Steven Phillips of AT&T Labs, one of the co-authors of the study, said, “At AT&T Labs, it is very gratifying to have the opportunity to apply the same research we use to plan and manage telecommunication networks to address pressing ecological challenges. AT&T Labs encourages me and my fellow researchers to pursue innovative new applications for advanced technologies, and we are proud to have had the opportunity to contribute to an effort that Madagascar is making to conserve its natural heritage.”

The study was funded in part by a grant from the MacArthur Foundation.

The Wildlife Conservation Society saves wildlife and wild places worldwide. We do so through science, global conservation, education and the management of the world's largest system of urban wildlife parks, led by the flagship Bronx Zoo. Together these activities change attitudes towards nature and help people imagine wildlife and humans living in harmony. WCS is committed to this mission because it is essential to the integrity of life on Earth.

Stephen Sautner | EurekAlert!
Further information:
http://www.wcs.org

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>