Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fueling Ethanol Production While Protecting Water Quality

03.04.2008
Scientists evaluate the unintended consequences of ethanol production on water quality in the March/April issue of Journal of Environmental Quality.

Grain-based ethanol production has increased dramatically in recent years as the cost and instability of oil has increased. New U.S. government policies require major increases in ethanol production.

While future plans call for a viable cellulosic ethanol industry, expanded grain ethanol production will lead to further growth of corn acres in the near term, with unintended negative water quality impacts. Currently, U.S. grain-based ethanol production is concentrated in the “Corn Belt”; however, several large production plants are under construction or planned near population centers in the eastern U.S. An interdisciplinary group of scientists evaluated potential impacts of grain- and cellulose-based ethanol on nutrient and animal management as they relate to water quality impacts on U.S. inland and coastal waters, particularly the Northern Gulf of Mexico (Mississippi River Basin discharge). The results of their evaluation were published in the March–April issue of the Journal of Environmental Quality and were also considered in the U.S. EPA Scientific Advisory Board’s 2007 Hypoxia Advisory Panel’s report.

The group of scientists recommended rigorous implementation of advanced conservation measures to minimize N and P losses from new or more intensively managed corn to partially offset nutrient loss increases. These measures include precision and variable rate applications of fertilizers, inter-seeding corn with cover crops, and inclusion of buffers or riparian filter strips. A viable perennial grass, wood, or waste-based cellulosic ethanol industry could provide water quality benefits and other ecosystem services. Regardless of feedstock, policy and scientific decisions must consider and address unintended consequences of biofuel production on the environment, particularly water quality, to avoid higher, future costs of remediation and ecosystem restoration.

Corn prices nearly doubled between 2005 (about $2.25 a bushel) and 2007 (about $4 per bushel; now about $5.00 per bushel) and there was a 15% increase in U.S. corn acres last year. The scientists projected that much of this increased acreage would come from land in soybeans (50%), the Conservation Reserve Program (25%), and hay and pastures (25%). Recent data indicate that much row crop conversion was from cotton as well as soybeans. This would not impact P loss estimates and could increase N loss. Even with recommended fertilizer and management, corn can be a greater source of N and P loss to water than soybeans, perennials, or hay crops. Most of the corn acreage increase occurred in the Mississippi River Basin, and in this basin, most N and P that leaves fields is delivered to the Gulf.

Dried distiller’s grains, a by-product of ethanol production, is being used in animal feeds, particularly for dairy and beef. Dried distiller’s grains contain high concentrations of P and may elevate manure P (and N) content, even when less than 20% of the animals’ diets. This may erode efforts to reduce ration and manure P and will make government feed management programs more expensive and less attractive to farmers. The use of wet distiller’s grains as feed near ethanol facilities avoids the cost of drying the distiller’s grains but requires co-location of animal operations, which will concentrate manure production, often far from grain production, making effective manure use as a fertilizer more difficult and expensive.

Cellulosic fuel stocks from perennials such as switchgrass and woody materials also have the potential to produce ethanol. While cellulosic feedstock production, storage, handling and conversion technology still limit production, a viable cellulosic ethanol industry could reduce dependence on grain and provide water quality and other environmental benefits (such as C sequestration and wildlife habitat). For example, switchgrass, a warm-season perennial prairie grass, produces large amounts of biomass for feedstock, loses very little N and P compared to corn, and stores C in its extensive root system.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://jeq.scijournals.org/cgi/content/abstract/37/2/318.

The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The Soil Science Society of America (SSSA) www.soils.org is a scientific society based in Madison, Wisconsin, which helps its 6,000+ members advance the disciplines and practices of soil science by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.soils.org

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>