Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Despite hopeful report that fungi help trees weather acid rain, not all species are protected, Cornell forest ecologist warns

19.06.2002


A discovery reported in the latest edition of the journal Nature (June 13, 2002) -- that fungi on the roots of some trees in the Northeastern United States help supply much-needed calcium in forest soils battered by acid rain -- would seem to ease worries about the worrisome form of pollution.



But don’t stop worrying just yet, warns Timothy J. Fahey, the Liberty Hyde Bailey Professor of Natural Resources at Cornell University and a co-author of the report, "Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems."

"Not all tree species are fortunate enough to be associated with the types of root fungi that supply calcium," he says, pointing to sugar maples, which in some areas have suffered serious declines in recent years.


"And although our findings suggest that trees with the right fungal associations may be able to short-circuit the loss of calcium in the soil, that may not get them around other problems with acidification of soil," he adds. For example, when soil pH is lowered (and acidity rises) more naturally occurring aluminum is available to hinder plant growth. Fahey is co-principal investigator in the soil study sponsored by the National Science Foundation (NSF) at New Hampshire’s Hubbard Brook Experimental Forest.

Also contributing to the Nature report were researchers at the University of Michigan, Syracuse University, the Yale School of Forestry and Environmental Studies, the U.S. Department of Agriculture’s Forest Service and the Institute of Ecosystem System Studies in Millbrook, N.Y.

Although forest scientists have known for more than three decades that acid rain causes the essential plant nutrient calcium to leach from forest soils, the role of the "short-circuiting" fungus was not suspected until about three years ago. That’s when electron-microscopy examination of sand revealed tiny tunnels burrowed through the grains; the mini-miners turned out to be ectomycorrhizal fungi that can penetrate micropores in silicates and take up phosphorus, as well as calcium. Living in symbiotic relationships on some tree roots -- where fungi obtain sugar needed for life processes -- the ectomycorrhizal fungi deliver calcium and phosphorus directly to the trees before the nutrients are lost to acidic soils.

The NSF-sponsored study at Hubbard Brook is testing the long-term result of adding calcium to forested ecosystems to return acid-base ratios to levels that probably existed a century ago, before industrial pollution began to change the chemical landscape of the northeastern United States. The Hubbard Brook researchers were using stable isotope tracing to learn the sources of calcium in plant matter. They found that a significant proportion of calcium in some tree species (particularly conifers, beech and birches) growing in calcium-poor, acidic soil was coming from apatite, a soil mineral mined by fungi on tree roots.

Apatite, pronounced like "appetite," is a calcium phosphate mineral. The trees also were getting some calcium from the better-understood "soil exchange complex," in which calcium is replenished by mineral weathering and atmospheric deposition before being absorbed by roots. But without the beneficial "weathering" of apatite by the ectomycorrhizal root fungi, some trees in acid rain-drenched soils probably would not be getting enough calcium, the researchers reasoned.

Benefits of the fungal association are most pronounced in tree species that can sustain the right kind of mycorrhizae on their roots -- spruce, fir and most other coniferous varieties, as well as certain hardwoods, such as oaks. And a lesser benefit might accrue to trees species with the "wrong" type of root fungi -- including ash, basswood and maples -- if they are growing nearby in mixed-species forests, simply because they are close enough to share calcium mined by other trees’ mycorrhizae, Cornell’s Fahey says.

"But trees trying to grow in the center of a single-species stand, like a sugarbush, could be in trouble," Fahey says, noting that the sugar maple decline in the Northeast has been linked with calcium and magnesium depletion in soils..

And he hopes that anyone who downplays the effects of pollution will not take comfort in the knowledge that obscure fungi are mopping up after acid rain. "There are still numerous deleterious effects of acid rain," Fahey says, "that have nothing to do with mycorrhizae."

Roger Segelken | EurekAlert!
Further information:
http://www.hbrook.sr.unh.edu/hbfound/hbfound.htm

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>