Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Despite hopeful report that fungi help trees weather acid rain, not all species are protected, Cornell forest ecologist warns

19.06.2002


A discovery reported in the latest edition of the journal Nature (June 13, 2002) -- that fungi on the roots of some trees in the Northeastern United States help supply much-needed calcium in forest soils battered by acid rain -- would seem to ease worries about the worrisome form of pollution.



But don’t stop worrying just yet, warns Timothy J. Fahey, the Liberty Hyde Bailey Professor of Natural Resources at Cornell University and a co-author of the report, "Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems."

"Not all tree species are fortunate enough to be associated with the types of root fungi that supply calcium," he says, pointing to sugar maples, which in some areas have suffered serious declines in recent years.


"And although our findings suggest that trees with the right fungal associations may be able to short-circuit the loss of calcium in the soil, that may not get them around other problems with acidification of soil," he adds. For example, when soil pH is lowered (and acidity rises) more naturally occurring aluminum is available to hinder plant growth. Fahey is co-principal investigator in the soil study sponsored by the National Science Foundation (NSF) at New Hampshire’s Hubbard Brook Experimental Forest.

Also contributing to the Nature report were researchers at the University of Michigan, Syracuse University, the Yale School of Forestry and Environmental Studies, the U.S. Department of Agriculture’s Forest Service and the Institute of Ecosystem System Studies in Millbrook, N.Y.

Although forest scientists have known for more than three decades that acid rain causes the essential plant nutrient calcium to leach from forest soils, the role of the "short-circuiting" fungus was not suspected until about three years ago. That’s when electron-microscopy examination of sand revealed tiny tunnels burrowed through the grains; the mini-miners turned out to be ectomycorrhizal fungi that can penetrate micropores in silicates and take up phosphorus, as well as calcium. Living in symbiotic relationships on some tree roots -- where fungi obtain sugar needed for life processes -- the ectomycorrhizal fungi deliver calcium and phosphorus directly to the trees before the nutrients are lost to acidic soils.

The NSF-sponsored study at Hubbard Brook is testing the long-term result of adding calcium to forested ecosystems to return acid-base ratios to levels that probably existed a century ago, before industrial pollution began to change the chemical landscape of the northeastern United States. The Hubbard Brook researchers were using stable isotope tracing to learn the sources of calcium in plant matter. They found that a significant proportion of calcium in some tree species (particularly conifers, beech and birches) growing in calcium-poor, acidic soil was coming from apatite, a soil mineral mined by fungi on tree roots.

Apatite, pronounced like "appetite," is a calcium phosphate mineral. The trees also were getting some calcium from the better-understood "soil exchange complex," in which calcium is replenished by mineral weathering and atmospheric deposition before being absorbed by roots. But without the beneficial "weathering" of apatite by the ectomycorrhizal root fungi, some trees in acid rain-drenched soils probably would not be getting enough calcium, the researchers reasoned.

Benefits of the fungal association are most pronounced in tree species that can sustain the right kind of mycorrhizae on their roots -- spruce, fir and most other coniferous varieties, as well as certain hardwoods, such as oaks. And a lesser benefit might accrue to trees species with the "wrong" type of root fungi -- including ash, basswood and maples -- if they are growing nearby in mixed-species forests, simply because they are close enough to share calcium mined by other trees’ mycorrhizae, Cornell’s Fahey says.

"But trees trying to grow in the center of a single-species stand, like a sugarbush, could be in trouble," Fahey says, noting that the sugar maple decline in the Northeast has been linked with calcium and magnesium depletion in soils..

And he hopes that anyone who downplays the effects of pollution will not take comfort in the knowledge that obscure fungi are mopping up after acid rain. "There are still numerous deleterious effects of acid rain," Fahey says, "that have nothing to do with mycorrhizae."

Roger Segelken | EurekAlert!
Further information:
http://www.hbrook.sr.unh.edu/hbfound/hbfound.htm

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>