Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warmer springs mean less snow, fewer flowers in the Rockies

07.03.2008
Spring in the Rockies begins when the snowpack melts. But with the advent of global climate change, the snow is gone sooner. Research conducted on the region’s wildflowers shows some plants are blooming less because of it.

David Inouye (University of Maryland) used data gathered in the Rockies from 1973 to the present to uncover the problem. Writing in the journal Ecology, he demonstrates that three flowers found in the Rockies are far more susceptible to late frost damage when the snow melts more quickly.

Inouye looked at three blossoms that are common to the famous mountain range. Larkspur (Delphinium barbeyi), holds its intense blue star-shaped, hooded blooms on thin-stemmed plants that can be anywhere from 3-6 feet tall. Aspen fleabane (Erigeron speciosus) is one of the most common asters to the region, and its small, purple daisy-like flowers have yellow centers. And aspen sunflowers (Helianthella quinquenervis) are well known for their startlingly bright yellow flowers which are often found in open, grassy areas.

Winter snow can be as deep as eight feet in the area where all three of these flowers grow, at 9,500 feet altitude, but the snow has been melting increasing early over the past decade because of a combination of lower snowfall and warmer springs. For the wildflower, earlier snowmelt results in an earlier growing season.

Once the snow is gone in the spring, the flowers begin to form buds and prepare to flower. But masses of cold air can still move through the region at night, causing frost as late as the month of June. The numbers indicate that frost events have increased in the past decade. From 1992 to 1998, on average 36.1 percent of the aspen sunflower buds were frosted. But for 1999-2000 the mean is 73.9 percent, and in only one year since 1998 have plants escaped all frost damage.

When those frost events occur, the long-lived plants do not die but are unable to produce flowers for that entire year. Without flowers, they cannot set seed and reproduce.

Inouye says the change happening here may be undetected by humans casually observing the area because these are all long-lived perennial plants. An individual sunflower, for instance, can live to be 50 or 75 years old.

“But we find that these perennials are not producing enough seeds to make the next generation of plants,” he says, and without new plants the transformations within plant and animal communities of this ecosystem could be quite intense.

Many insects such as the fruit flies known as tephritid flies, which eat the flowers’ seeds, seem to be plant specific, he points out, and so they may disappear, too if there are no flowers to produce seeds. Parasitoid wasps that feed on those flies will then feel the loss, as well. Grasshoppers also feast upon the flower petals. And, these plants are eaten by many kinds of large herbivores, including deer, elk, cows and sheep.

“What will replace these colorful flowers? We don’t know,” says Inouye. “But we know that many animals depend upon them, and so the outcome could be quite dramatic.”

Inouye and his colleagues say that there is much work to be done on the topic of phenology, which is the study of periodic plant and animal life cycle events. These events are heavily influenced by environmental changes, especially seasonal variations in temperature and precipitation driven by weather and climate. There is even an important role to be played by citizen scientists, who can gather information for the National Phenology Network’s new endeavor called Project Budburst.

“In the future, we anticipate climate change will affect plants and animals in many ways, but information is needed on how those changes will play out for specific plants,” says Inouye. Some, he says, may bloom sooner and others may not bloom at all. Some may become more prolific and others may die out completely. Citizen scientists who volunteer to help record phenological events can make an important contribution to such studies.

Nadine Lymn | EurekAlert!
Further information:
http://www.esa.org
http://www.usanpn.org/
http://www.windows.ucar.edu/citizen_science/budburst/

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>