Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature's helpers: Using microorganisms to remove TCE from water

03.03.2008
In 2002, Bruce Rittmann, PhD, director of the Biodesign Institute’s Center for Environmental Biotechnology, received a patent for an innovative way to use nature to lend society a hand. He invented a treatment system, called the membrane biofilm reactor (MBfR), which uses naturally occurring microorganisms to remove contaminants from water.

Now Rittmann and his research team, which includes Rosa Krajmalnik-Brown and Jinwook Chung, recently published a paper in the journal Environmental Science & Technology for a new application that removes a problematic contaminant that has made local headlines.

The chlorinated solvent trichloroethene (TCE) has been found to be an increasingly problematic contaminant in groundwater. The detection of TCE recently forced the shut down of the water supply for the Greater Phoenix area municipalities of Paradise Valley and Scottsdale.

TCE has been widely used as a cleaning agent and solvent for many military, commercial, and industrial applications. Its widespread use, along with its improper handling, storage, and disposal, has resulted in frequent detection of TCE in the groundwater. TCE has the potential to cause liver damage, malfunctions in the central nervous system and it is considered a likely human carcinogen.

“As with other elements, the chlorine cycle is becoming a key concern to many environmental pollution scientists,” said Krajmalnik-Brown, a researcher in the Biodesign Institute’s Center for Environmental Biotechnology and assistant professor in the Ira A. Fulton School of Engineering’s Department of Civil and Environmental Engineering.

Transforming the chlorinated solvent to a harmless product is the best way to eliminate the harmful effects of TCE. In the case of TCE, Mother Nature is the best helper. Scientists have discovered specialized microorganisms that can replace the chlorine in the chlorinated molecules with hydrogen, a process called reductive dechlorination. While other methods are possible, they are often more costly than reductive dechlorination on a large scale, and many do not transform TCE into a harmless end product.

In the paper, the Rittmann team utilized the MBfR and a naturally occurring group of microorganisms able to remove TCE from water. Surprisingly, these microorganisms, called dehalogenerators, have an affinity for chlorinated organics and can be found all throughout nature, even in clean water supplies, the soil, and groundwater.

“These bacteria respire TCE, that is, they can use TCE like we use oxygen to breathe,” said Krajmalnik-Brown. “They take in the TCE and they start removing the chlorines, step by step. In the ideal case, the dehalogenators remove all the chlorines, converting TCE to ethene, which is harmless.”

With this knowledge in hand, the challenge for the research team was to adapt their existing MfBR system, which can remove other water contaminants, to see if it could now handle TCE. A version of the reactor that addresses perchlorate, a byproduct of rocket fuel, is already in the commercialization pipeline.

“A key challenge with using these bacteria is that, if they don’t dechlorinate all the way, the TCE can be converted to vinyl chloride, which is a known human carcinogen,” said Krajmalnik-Brown. “In other words, if you don’t have complete dechlorination, you can end up having something worse than what you started with. So, it is critical to have the right mix of microorganisms for complete dechlorination.”

Their approach was simple in execution. They took an existing MBfR that was handling perchlorate removal and then introduced TCE into the system.

Rittmann’s MBfR works by delivering hydrogen gas to the bacteria through tiny hollow tubes submerged in water. In the right environment, the tubes become coated with a biofilm containing microorganisms. The system provides the microorganisms with hydrogen gas, which must be present for the microorganisms to change the chemical composition of a contaminant and render it harmless.

Their results indicated that the MBfR could be an incredibly versatile system, quickly adapting to now handle TCE. “This was really surprising, because there wasn’t any TCE at our pilot plant experiments prior to switching,” said Krajmalnik-Brown. “So there must have been really small amounts of the critical microorganisms in the culture. When shifted to TCE, they thrived and handled the contaminants.”

By assessing the MBfR community, they found the special dehalogenating bacteria that can take the hydrogen supplied by the MBfR and reduce TCE all the way to harmless ethene. Using the latest molecular techniques, they could not only identify the bacterial population to handle TCE, but also the genes within these populations that make enzymes that detoxify TCE to ethene.

The team found one particular organism, a new type of Dehalococcoides, the bacteria known to dechlorinate TCE all the way to ethene. They were also the first group to grow these dehalogenating bacteria in a biofilm in the lab.

“The bacteria are notoriously difficult to grow into a biofilm in the lab and study because they need hydrogen as an electron donor. An advantage of our system is that the MBfR can provide hydrogen through a membrane, which allows the microbial community to grow and naturally form a biofilm surrounding the membrane,” said Krajmalnik-Brown.

Next, the team hopes to drive the TCE system toward commercialization. Other oxidized contaminants that the system has been effective in reducing in the laboratory setting include perchlorate, selenate (found in coal wastes and agricultural drainage), chromate (found in industrial wastes), and other chlorinated solvents.

Joe Caspermeyer | EurekAlert!
Further information:
http://www.asu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>