Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reveal first-ever global map of total human effects on oceans

15.02.2008
More than 40% of the world’s oceans are heavily affected by human activities, and few if any areas remain untouched, according to the first global-scale study of human influence on marine ecosystems. By overlaying maps of 17 different activities such as fishing, climate change, and pollution, the researchers have produced a composite map of the toll that humans have exacted on the seas.

The work, published in the Feb. 15 issue of Science and presented at a press conference Thursday February 14 at 1 pm EST at the American Association for the Advancement of Science (AAAS) meeting in Boston, MA, was conducted at the National Center for Ecological Analysis and Synthesis (NCEAS) at UC Santa Barbara and involved 19 scientists from a broad range of universities, NGOs, and government agencies.

The study synthesized global data on human impacts to marine ecosystems such as coral reefs, seagrass beds, continental shelves, and the deep ocean. Past studies have focused largely on single activities or single ecosystems in isolation, and rarely at the global scale. In this study the scientists were able to look at the summed influence of human activities across the entire ocean.

“This project allows us to finally start to see the big picture of how humans are affecting the oceans.” said lead author Ben Halpern, Assistant Research Scientist at NCEAS. “Our results show that when these and other individual impacts are summed up, the big picture looks much worse than I imagine most people expected. It was certainly a surprise to me.”

"This research is a critically needed synthesis of the impact of human activity on ocean ecosystems," said David Garrison, biological oceanography program director at NSF. "The effort is likely to be a model for assessing these impacts at local and regional scales."

“Clearly we can no longer just focus on fishing or coastal wetland loss or pollution as if they are separate effects,” said Andrew Rosenberg, a Professor of Natural Resources at the University of New Hampshire who was not involved with the study. “These human impacts overlap in space and time, and in far too many cases the magnitude is frighteningly high. The message for policymakers seems clear to me: conservation action that cuts across the whole set of human impacts is needed now in many places around the globe.”

The study reports that the most heavily affected waters in the world include large areas of the North Sea, the South and East China Seas, the Caribbean Sea, the east coast of North America, the Mediterranean Sea, the Red Sea, the Persian Gulf, the Bering Sea, and several regions in the western Pacific. The least affected areas are largely near the poles.

“Unfortunately, as polar ice sheets disappear with warming global climate and human activities spread into these areas, there is a great risk of rapid degradation of these relatively pristine ecosystems,” said Carrie Kappel, a principal investigator on the project and a post-doctoral researcher at NCEAS.

Importantly, human influence on the ocean varies dramatically across various ecosystems. The most heavily affected areas include coral reefs, seagrass beds, mangroves, rocky reefs and shelves, and seamounts. The least impacted ecosystems are soft-bottom areas and open-ocean surface waters.

“There is definitely room for hope,” added Halpern. “With targeted efforts to protect the chunks of the ocean that remain relatively pristine, we have a good chance of preserving these areas in good condition.”

The research involved a four-step process. First, the scientists developed techniques to quantify and compare how different human activities affect each marine ecosystem. For example, fertilizer runoff has been shown to have a large effect on coral reefs but a much smaller one on kelp forests. Second, the researchers gathered and processed global data on the distributions of marine ecosystems and human influences. Third, the researchers combined data from the first and second steps to determine “human impact scores” for each location in the world. Finally, using global estimates of the condition of marine ecosystems from previous studies, the researchers were able to ground-truth their impact scores.

Despite all this effort, the authors acknowledge that their maps are yet incomplete, because many human activities are poorly studied or lack good data. “Our hope is that as more data become available, the maps will be refined and updated,” said Fio Micheli, a principal investigator on the project and Assistant Professor at Stanford University. “But this will almost certainly create a more dire picture.”

This study provides critical information for evaluating where certain activities can continue with little effect on the oceans, and where other activities might need to be stopped or moved to less sensitive areas. As management and conservation of the oceans turns toward marine protected areas (MPAs), ecosystem-based management (EBM) and ocean zoning to manage human influence, such information will prove invaluable to managers and policymakers.

“Conservation and management groups have to decide where, when, and what to spend their resources on,” said Kimberly Selkoe, a principal investigator on the project and a post-doctoral researcher at the University of Hawaii. “Whether one is interested in protecting ocean wilderness, assessing which human activities have the greatest impact, or prioritizing which ecosystem types need management intervention, our results provide a strong framework for doing so.”

“My hope is that our results serve as a wake-up call to better manage and protect our oceans rather than a reason to give up,” Halpern said. “Humans will always use the oceans for recreation, extraction of resources, and for commercial activity such as shipping. This is a good thing. Our goal, and really our necessity, is to do this in a sustainable way so that our oceans remain in a healthy state and continue to provide us the resources we need and want.”

Gail Gallessich | EurekAlert!
Further information:
http://www.nceas.ucsb.edu/GlobalMarine

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>