Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Reef boom beats doom

Marine scientists say they are astonished at the spectacular recovery of certain coral reefs in Australia’s Great Barrier Reef Marine Park from a devastating coral bleaching event in 2006.

That year high sea temperatures caused massive and severe coral bleaching in the Keppel Islands, in the southern part of the GBR. The damaged reefs were quickly smothered by a single species of seaweed – an event that can spell the total loss of the corals.

However, a lucky combination of rare circumstances meant the reefs were able to achieve a spectacular recovery, with abundant corals re-established in a single year, says Dr Guillermo Diaz-Pulido, from the ARC Centre of Excellence for Coral Reef Studies (CoECRS) and the Centre for Marine Studies at The University of Queensland.

Dr Diaz-Pulido explains that the rapid recovery is due to an exceptional combination of previously-underestimated ecological mechanisms.

“Three factors were critical. The first was exceptionally high re-growth of fragments of surviving coral tissue. The second was an unusual seasonal dieback in the seaweeds, and the third was the presence of a highly competitive coral species, which was able to outgrow the seaweed.

“But this also all happened in the context of a well-protected marine area and moderately good water quality”, said Dr Diaz-Pulido.

“It is rare to see reports of reefs that bounce back from mass coral bleaching or other human impacts in less than a decade or two,” he adds

“The exceptional aspect was that corals recovered by rapidly regrowing from surviving tissue. Recovery of corals is usually thought to depend on sexual reproduction and the settlement and growth of new corals arriving from other reefs. This study demonstrates that for fast-growing coral species asexual reproduction is a vital component of reef resilience” says Dr Sophie Dove, also from CoECRS and The University of Queensland.

“Coral reefs globally are increasingly being damaged by mass bleaching and climate change, and their capacity to recovery from that damage is critical to their future,” explains Prof. Ove Hoegh-Guldberg of CoECRS and The University of Queensland. “Our study suggests that managing local stresses that affect reefs such as overfishing and declining water quality can have a big influence on the trajectory of reefs under rapid global change.”

“Clearly, we need to urgently deal with the problem of rising carbon dioxide in the atmosphere, but managing reefs to reduce the impact of local factors can buy important time while we do this,” he says.

Understanding the different mechanisms of resilience is critical for reef management under climate change. “Diversity in processes may well be critical to the overall resilience and persistence of coral reef ecosystems globally,” Dr Laurence McCook, from the Great Barrier Reef Marine Park Authority, says.

The research was partially funded by a Pew Fellowship in Marine Conservation awarded to Dr McCook, the Great Barrier Reef Marine Park Authority as well as the ARC Centre of Excellence program.

“This combination of circumstances provided a lucky escape for the coral reefs in Keppel Islands, but is also a clear warning for the Great Barrier Reef. As climate change and other human impacts intensify, we need to do everything we possibly can to protect the resilience of coral reefs,” he adds.

The research was published this week in the paper Doom and boom on a resilient reef: Climate change, algal overgrowth and coral recovery, in the journal PLoS ONE, by Guillermo Diaz-Pulido, Laurence J. McCook, Sophie Dove, Ray Berkelmans, George Roff, David I. Kline, Scarla Weeks, Richard D. Evans, David H. Williamson and Ove Hoegh-Guldberg.

More information:
Dr Guillermo Diaz-Pulido, CoECRS and University of Queensland, Ph: 07-3365-3378 or 0425 296 530, e-mail:
Dr Laurence McCook, Great Barrier Reef Marine Park Authority and COECRS Ph: 07 4750-0846, e-mail:
Jenny Lappin, CoECRS, + 61 (0)7 4781 4222
Jan King, UQ Communications Manager, +61 (0)7 3365 1120

Guillermo Diaz-Pulido | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>