Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recycling a Greenhouse Gas for High-Energy Fuel

03.03.2009
A team of researchers at Penn State has come up with an ingenious method of turning captured CO2 into methane using the energy of the sun.

Fossil fuel use, ranging from electricity generating power plants to automobiles, pumps billions of tons of greenhouse gases into the atmosphere annually, changing the climate in ways that are likely to be detrimental to future generations.

The rising use of fossil fuels, driven by population growth and rising standards of living across the globe, adds to the urgency of finding a solution to the problem of rapidly increasing atmospheric carbon dioxide, the major greenhouse gas. At Penn State, a team of researchers led by Craig Grimes has come up with an ingenious method of turning captured CO2 into methane, a combustible fuel, using the energy of the sun.

Writing in Nano Letters (Volume 9, 2009, pp 731-737), Grimes and his team describe a highly efficient photocatalyst that can yield significant amounts of methane, other hydrocarbons, and hydrogen in a simple, inexpensive process. The team used arrays of nitrogen-doped titania nanotubes sputter-coated with an ultrathin layer of a platinum and/or copper co-catalyst(s). The titania captures high energy ultraviolet wavelengths, while the copper shifts the bandgap into the visible wavelengths to better utilize the part of the solar spectrum where most of the energy lies. In addition, the thin-walled nanotubes increase the transport ability of the charge carriers by reducing the chance for recombination of the electron with the hole.

The nanotube arrays were placed inside a stainless steel chamber filled with carbon dioxide infused with water vapor. The chamber was then set outdoors in sunlight; after a few hours the team measured the amount of CO2 converted into useful fuels. The results showed 160 µL of methane per hour per gram of nanotubes, a conversion rate approximately 20 times higher than previous efforts done under laboratory conditions using pure UV light.

“Copper oxide and titanium dioxide are common materials,” Grimes says. “We can tune the reaction using platinum nanoparticles or ideally other, less expensive catalysts.” Grimes believes that the conversion process can readily be improved by several orders of magnitude, which could make the process economically feasible.

“You could have a small scale solar condenser and a concentrated source of CO2 in a closed loop cycle to make a portable fuel. It’s a good way of storing energy for when the sun goes down,” he suggests. Inexpensive solar concentrators could improve the process, as the photocatalytic CO2 conversion appears to scale with the intensity of sunlight.

Capturing CO2 at source points, such as fossil fuel (coal, natural gas, etc.)-burning power plants, and turning it into a transportation fuel in a cheap, sunlight-driven process could dramatically improve the economics of CO2 capture. “Then maybe we could figure out how to capture and reuse the CO2 in our vehicles and none of it would go back into the atmosphere,” Grimes proposes.

Future research will look into increasing conversion rates by modifying the co-catalysts and changing the reactor design from a batch reactor to a flow-through photocatalytic design. “We are now reaching for low hanging fruit,” Grimes says. “There is plenty of opportunity for dramatic improvements.”

The article authors are Materials Research Institute scientists Oomman K. Varghese, Ph.D. and Maggie Paulose, Ph.D.; Thomas J. LaTempa, a graduate student in the Department of Electrical Engineering; and Craig A. Grimes, Ph.D., a professor of electrical engineering and materials science and engineering, as well as a faculty member in the Materials Research Institute at Penn State.

Walt Mills | Newswise Science News
Further information:
http://www.psu.edu
http://www.mri.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>