Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Racing cane toads reveals they get cold feet on Southern Australia invasion

28.08.2008
Cane toads weren’t allowed to compete in the Olympics, but scientists have raced cane toads in the laboratory and calculated that they would not be able to invade Melbourne, Adelaide or Hobart and are unlikely to do well in Perth or Sydney, even with climate change.

According to research recently published in Ecography by Dr Michael Kearney, from the Department of Zoology at the University of Melbourne, and collaborators from Australia and the USA, the cane toad’s march will grind to a halt once it is physically too cold for the toads to hop.

“The cane toads cannot survive in much of Southern Australia because they would be too cold to move about and forage or spawn” said Dr Kearney.

Their study is unique in that it is based on an understanding of the capabilities of the toad itself whereas many other studies – some predicting that Melbourne would be invaded by the toads – are based on correlations between climate and the places the toads are living at now, which can lead to errors.

Since their introduction to Australia in the 1930s, cane toads have been steadily advancing across Australia and have already invaded Brisbane and Darwin. Once used as pest control, the toads are now a devastating pest themselves so an accurate prediction of their final range and rate of movement is essential.

If there were a cane toad Olympics, all eyes would be on the weather: because they are cold-blooded, the toad’s ability to move depends on its body temperature which fluctuates with its environment.

Dr Kearney and his colleagues, including Dr. Ben Phillips from the University of Sydney and Dr. Chris Tracy from Charles Darwin University, set up a 2m sprint event for toads at a range of different temperatures to see what temperatures would slow toads down the most.

The team used field-collected toads from four populations across the invasion front.

“We found that cane toads can barely hop once they get below about 15 degrees Celsius”, said Dr. Tracy. “Their range would also be constrained by the limited availability of water for their tadpoles in some parts of Australia”.

After racing their toads, Kearney and his colleagues used sophisticated computer models developed by Dr Warren Porter at the University of Wisconsin, Madison USA, to predict how cold toads would get at different times of the year across Australia.

They found that it is so warm and wet around Darwin that toads there can hop more than 50 kms per year. However, the cooler, drier conditions around Sydney or Perth mean that toads can barely manage 1 km per year. And they couldn’t move at all under typical weather conditions in Adelaide, Melbourne and Hobart.

They found that toads have particular difficulties in parts of southern Australia with what are known as Mediterranean climates – places with cold wet winters and warm dry summers.

“These are perfect conditions for growing wine, but you are unlikely to meet a toad at a winery” said Dr Kearney. In many of these places the air temperature at night – the active period for toads - is often above 15 degrees Celsius, but this only happens during summer, and evaporation in the dry summer air cools them down too much.

“Our study is particularly helpful in predicting where cane toads could live under climate change because we have identified a cause-and-effect way that climate limits the toads”. Dr. Kearney said.

“In one way it is obvious why dry conditions are bad for frogs – they lose too much water” explained Dr. Kearney. “But having wet skin also provides frogs with a thermal challenge because the evaporating water takes heat away from their bodies and often makes them colder than the air.”

They found that a moderate global warming could allow toads to move 100 km further south than their present limit by 2050. This would make conditions in Sydney slightly better for toads, and the only other city at risk of toad invasion under this scenario would be Perth.

Davina Quarterman | alfa
Further information:
http://www3.interscience.wiley.com/journal/120122978/abstract

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>