Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Green" electricity to help UK meet 2050 carbon emissions target

26.11.2008
Extensive use of low-carbon "green" electricity could help the UK dramatically cut its carbon emissions by 2050, say the leaders of a new research programme to be announced this week at Imperial College London.

Large-scale use of low-carbon electricity is one technological innovation that Imperial researchers will be developing in the new 'Planet 2050' programme, being set up to help develop the radical approaches needed to achieve the large-scale global emissions reductions sought by 2050.

The UK Committee on Climate Change recommended in October 2008 that the UK should aim to reduce greenhouse gas emissions by at least 80 percent by 2050 compared to 1990 levels. In the same timeframe, global emissions will need to fall by at least 50 percent.

Journalists are invited to find out more about Planet 2050 at Imperial at 6pm on Thursday 27 November 2008.

The programme brings together scientists and engineers from Imperial to work on new technologies that can help the UK dramatically reduce its carbon emissions. One element is the 'Electric Futures' project which will explore the use of low carbon electricity to meet a large part of the UK's energy needs, in particular to replace liquid fuels for ground transport and natural gas for heating buildings.

Low carbon electricity is produced using methods that emit minimal carbon dioxide into the atmosphere. These could include wind, tidal, solar or nuclear power, and even fossil fuel or biomass burning power stations that have been designed to capture the emitted carbon dioxide for storage deep underground.

The scientific and engineering challenges associated with a low-carbon all-electric economy are significant, because the current electricity supply system could not cope if most cars and homes in the UK relied on it for energy.

At the Planet 2050 launch event, researchers from Imperial's Grantham Institute for Climate Change, and Energy Futures Lab will explain how the technical problems can be overcome and invite audience members to imagine what life would be like in 40 years if the 80% carbon emissions reduction target is achieved.

Professor Nigel Brandon, Director of Imperial's Energy Futures Lab, explains:

"A lot needs to be done over the next few decades to develop new ways of producing and supplying electricity, and to investigate how it could be used to replace the gas in our homes and petrol in our cars.

"At Imperial we have a large number of researchers working on technologies to provide solutions. 'Planet 2050' brings them together and, through 'Electric Futures' and other projects, builds on their existing work to help achieve significant carbon reductions over the next 40 years."

Speakers at the launch event will focus on topics including:

*All-electric buildings
Professor David Fisk from the Department of Civil and Environmental Engineering will discuss how all-electric buildings of the future could become a reality. He will outline changes to personal and corporate electricity consumption, national power generation and distribution necessary for all buildings were to source all their heat and energy from "green" electricity.
*Electric Mobility
Professor John Polak, Head of Imperial's Centre for Transport Studies, will discuss how the planning and operation of transport systems might change in an all-electric future. Conventional concepts of ownership and use could be replaced by more flexible concepts of shared or fractional ownership, where mobility and access are seen as services flexibly provided by an ensemble of modes and vehicle types. Such a service-oriented model would be underpinned by advanced systems for communication and control, designed to balance mobility, environmental and energy management objectives.

The event will also include an introductory talk by Professor Sir Brian Hoskins, Director of the Grantham Institute for Climate Change at Imperial, who will outline the climate motivation for an 80 percent reduction in greenhouse gas emissions.

Nearly 60 percent of greenhouse gas emissions from human activities are due to CO2 emissions from fossil fuel use. Sir Brian, who is also a member of the UK Committee on Climate Change, stresses that big reductions in all sources of CO2 emissions from fossil fuels are necessary:

"If we are to meet the UK carbon reduction targets by 2050, we need to tackle this 60 percent through a transformation of our energy and transport systems and other infrastructure," says Sir Brian. "The ambitious and visionary research that the 'Planet 2050' programme will deliver will be vital in helping shape an effective and affordable response to the climate challenge."

The launch event will take place in 170 Queen's Gate, Imperial College London at 6pm on Thursday 27 November. Journalists wishing to attend must register in advance by contacting:

Danielle Reeves, Imperial College London press office
Tel: +44 (0)20 7594 2198
Out-of-hours duty press office: +44 (0)7803 886248
Email: Danielle.reeves@imperial.ac.uk

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk/energyfutureslab
http://www.imperial.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>