Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Questions rise about seeding for ocean C02 sequestration

13.06.2013
A new study on the feeding habits of ocean microbes calls into question the potential use of algal blooms to trap carbon dioxide and offset rising global levels.
These blooms contain iron-eating microscopic phytoplankton that absorb C02 from the air through the process of photosynthesis and provide nutrients for marine life. But one type of phytoplankton, a diatom, is using more iron that it needs for photosynthesis and storing the extra in its silica skeletons and shells, according to an X-ray analysis of phytoplankton conducted at the U.S. Department of Energy’s Argonne National Laboratory. This reduces the amount of iron left over to support the carbon-eating plankton.

“Just like someone walking through a buffet line who takes the last two pieces of cake, even though they know they’ll only eat one, they’re hogging the food,” said Ellery Ingall, a professor at the Georgia Institute of Technology and co-lead author on this result. “Everyone else in line gets nothing; the person’s decision affects these other people.”

Because of this iron-hogging behavior, the process of adding iron to surface water – called iron fertilization or iron seeding – may have only a short-lived environmental benefit. And, the process may actually reduce over the long-term how much C02 the ocean can trap.

Rather than feed the growth of extra plankton, triggering algal blooms, the iron fertilization may instead stimulate the gluttonous diatoms to take up even more iron to build larger shells. When the shells get large enough, they sink to the ocean floor, sequestering the iron and starving off the diatom’s plankton peers.

Over time, this reduction in the amount of iron in surface waters could trigger the growth of microbial populations that require less iron for nutrients, reducing the amount of phytoplankton blooms available to take in C02 and to feed marine life.

While scientists have known for a long time that phytoplankton use iron to fuel the process of photosynthesis, there are gaps in their understanding of how this iron cycling process works. Those gaps led scientists to miss how large an amount of iron was getting trapped in those sinking skeletons and removed permanently from the food chain. X-ray studies at the Advanced Photon Source at Argonne gave scientists a way to measure the ratio of iron and silica in the plankton and surface water.

“Being able to use X-rays and see the element content of individual microscopic phytoplankton has completely altered our perspective on how these organisms use iron and how that could affect C02 levels,” Ingall said.

In the paper “Role of biogenic silica in the removal of iron from the Antarctic seas” published June 10 in the journal Nature Communications, scientists conservatively estimate that 2.5 milligrams of iron annually is removed from every square meter of surface water in the Ross Sea and sequestered in silica skeletons on the ocean floor. This is roughly equivalent to the total amount of iron deposited annually into the Ross Sea surface through snow melt, dust and upwelling of seawater.

The same process may be occurring in the Southern Ocean and having a greater impact there, because this region dictates the nutrient mix for the rest of the world’s oceans through migratory current patterns.

More study is needed to know just how much iron is used to make the silica skeletons and how much gets trapped on the ocean floor, the researchers said.

“This gap in our knowledge, combined with renewed interest in iron fertilization as an approach to the current climate crisis, makes it crucial that we have an improved understanding of iron cycling in marine systems,” Ingall said.

Measurements of iron and silicon content in silica from living phytoplankton collected in the coastal seas of West Antarctica was derived through X-ray analysis on beamlines 2-ID-D and 2-ID-E at the Advanced Photon Source using microscopy and fluorescence techniques. High-resolution imaging, chemical identification and the ability to focus X-rays on an ultra small area of about 200 by 200 nanometers were key to this analysis. For comparison, it would take 500 samples of this size to fit across the width of a single human hair.

The work was supported by the National Science Foundation and the Swedish Antarctic Research Programme. The U.S. Department of Energy’s Office of Basic Energy Sciences supported use of the APS.

The research was conducted by Ingall, Julia Diaz, Amelia Longo and Michelle Oakes from the Georgia Institute of Technology; Lydia Finney, Stefan Vogt and Barry Lai from the Advanced Photon Source; Patricia Yager from the University of Georgia; Benjamin Twining from the Bigelow Laboratory for Ocean Sciences; and Jay Brandes from the Woods Hole Oceanographic Institution.

The Goergia Institute of Technology news release can be viewed on its website.

The Advanced Photon Source at Argonne National Laboratory is one of five national synchrotron radiation light sources supported by the U.S. Department of Energy’s Office of Science to carry out applied and basic research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels, provide the foundations for new energy technologies, and support DOE missions in energy, environment, and national security. To learn more about the Office of Science X-ray user facilities, visit the Office of Science website.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Tona Kunz | EurekAlert!
Further information:
http://www.anl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>