Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Portuguese São Domingos mine generates acidic water following 43 years of inactivity

10.02.2009
Located five kilometers from the Spanish border, the Portuguese São Domingos mine, abandoned since 1966, continues to pollute the river ways that flow into Chanza dam, the largest drinking water reservoir in the province of Huelva, according to scientists from the University of Huelva. The new study shows that oxidation and the dissolving of sulfurs are processes that remain active today, so the researchers are asking that solution plans be put in place.

The Portuguese São Domingos mine is located in the Iberian Pyrite Belt along with other mines located on the Spanish side, such as Río Tinto or Almagrera, Huelva. The mine abounds in highly contaminating waste, such as smelting dregs and ash. Active between 1857 and 1966, over time it has generated "extremely" acidic drainage due to the oxidation of sulfuric waste.

According to Antonio M. Álvarez-Valero, lead author of the study published recently in the journal Environmental Geology and currently a researcher at the Andalusian Institute of Earth Sciences (a University of Granada - CSIC joint center), "the fundamental concern from the environmental point of view deriving from this waste oxidation is the generation of acidic waters".

And the acidic discharge from São Domingos affects Chanza dam, the largest drinking water reservoir serving Huelva, because the pollutants undergo "a relative attenuation".

To evaluate the environmental impact and determine the level of acidification of some components, the study presents a characterization of the mineralogical, geochemical and physical properties of the mining waste from the São Domingos district. "We have established, through a later work, the potential risk of moving the toxic metals in this waste, and their possible incorporation into the food chain", Álvarez-Valero explains to SINC.

Although the mine is abandoned, it remains active "from the point of view of contamination". The researcher says that the contaminating impact of the mine is renewed in annual cycles. During the wet or raining periods, the contaminating elements "re-dissolve and once again generate acidity", Álvarez-Valero points out.

The analysis shows that "the massive presence of sulfurs in São Domingos in some of the waste ensures a continuous, annual generation of acidic mine drainage", the researcher confirms.

The mine, which is considered medium in size compared to others, is exposed to "a remarkable" volume of waste: 25 Mm3. Although a large part of this waste is inaccessible because it is located beneath the town of São Domingos, "its high acidification potential represents a threat for environmental pollution", the scientist says.

Faced with this situation, the researchers say that the methodical sequence of this study should be applied to other mines in the same area, such as Caveira, Lousal, Aljustrel, in the south-east of Portugal, and Tharsis, La Zarza, Peña del Hierro, Almagrera or Río Tinto, in Huelva, where research projects are already underway.

The São Domingos mining district was active between the 19th and 20th centuries, but "mining there goes back to pre-Roman times", says Álvarez-Valero. In the abandoned or fossil mining areas, the largest sources of soil and surface water contamination come from the leaching (washing) of metals and metalloids from waste rich in sulfur (such as pyrite).

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>