Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Portuguese São Domingos mine generates acidic water following 43 years of inactivity

10.02.2009
Located five kilometers from the Spanish border, the Portuguese São Domingos mine, abandoned since 1966, continues to pollute the river ways that flow into Chanza dam, the largest drinking water reservoir in the province of Huelva, according to scientists from the University of Huelva. The new study shows that oxidation and the dissolving of sulfurs are processes that remain active today, so the researchers are asking that solution plans be put in place.

The Portuguese São Domingos mine is located in the Iberian Pyrite Belt along with other mines located on the Spanish side, such as Río Tinto or Almagrera, Huelva. The mine abounds in highly contaminating waste, such as smelting dregs and ash. Active between 1857 and 1966, over time it has generated "extremely" acidic drainage due to the oxidation of sulfuric waste.

According to Antonio M. Álvarez-Valero, lead author of the study published recently in the journal Environmental Geology and currently a researcher at the Andalusian Institute of Earth Sciences (a University of Granada - CSIC joint center), "the fundamental concern from the environmental point of view deriving from this waste oxidation is the generation of acidic waters".

And the acidic discharge from São Domingos affects Chanza dam, the largest drinking water reservoir serving Huelva, because the pollutants undergo "a relative attenuation".

To evaluate the environmental impact and determine the level of acidification of some components, the study presents a characterization of the mineralogical, geochemical and physical properties of the mining waste from the São Domingos district. "We have established, through a later work, the potential risk of moving the toxic metals in this waste, and their possible incorporation into the food chain", Álvarez-Valero explains to SINC.

Although the mine is abandoned, it remains active "from the point of view of contamination". The researcher says that the contaminating impact of the mine is renewed in annual cycles. During the wet or raining periods, the contaminating elements "re-dissolve and once again generate acidity", Álvarez-Valero points out.

The analysis shows that "the massive presence of sulfurs in São Domingos in some of the waste ensures a continuous, annual generation of acidic mine drainage", the researcher confirms.

The mine, which is considered medium in size compared to others, is exposed to "a remarkable" volume of waste: 25 Mm3. Although a large part of this waste is inaccessible because it is located beneath the town of São Domingos, "its high acidification potential represents a threat for environmental pollution", the scientist says.

Faced with this situation, the researchers say that the methodical sequence of this study should be applied to other mines in the same area, such as Caveira, Lousal, Aljustrel, in the south-east of Portugal, and Tharsis, La Zarza, Peña del Hierro, Almagrera or Río Tinto, in Huelva, where research projects are already underway.

The São Domingos mining district was active between the 19th and 20th centuries, but "mining there goes back to pre-Roman times", says Álvarez-Valero. In the abandoned or fossil mining areas, the largest sources of soil and surface water contamination come from the leaching (washing) of metals and metalloids from waste rich in sulfur (such as pyrite).

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>