Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pollution from Asia Circles Globe at Stratospheric Heights

26.03.2010
The economic growth across much of Asia comes with a troubling side effect: pollutants from the region are being wafted up to the stratosphere during monsoon season. The new finding, in a study led by scientists at the National Center for Atmospheric Research, provides additional evidence of the global nature of air pollution and its effects far above Earth's surface.

The international study is being published Thursday in Science Express. It was funded by the National Science Foundation, NCAR's sponsor, together with NASA and the Canadian Space Agency.

Using satellite observations and computer models, the research team determined that vigorous summertime circulation patterns associated with the Asian monsoon rapidly transport air upward from the Earth's surface. Those vertical movements provide a pathway for black carbon, sulfur dioxide, nitrogen oxides, and other pollutants to ascend into the stratosphere, about 20-25 miles above the Earth's surface.

"The monsoon is one of the most powerful atmospheric circulation systems on the planet, and it happens to form right over a heavily polluted region," says NCAR scientist William Randel, the lead author. "As a result, the monsoon provides a pathway for transporting pollutants up to the stratosphere."

Once in the stratosphere, the pollutants circulate around the globe for several years. Some eventually descend back into the lower atmosphere, while others break apart.

The study suggests that the impact of Asian pollutants on the stratosphere may increase in coming decades because of the growing industrial activity in China and other rapidly developing nations. In addition, climate change could alter the Asian monsoon, although it remains uncertain whether the result would be to strengthen or weaken vertical movements of air that transport pollutants into the stratosphere.

Randel says more research is needed into the possible effects of the pollutants. When sulfur rises into the stratosphere, it can lead to the creation of small particles called aerosols that are known to influence the ozone layer. The monsoon transport pathway may also have effects on other gases in the stratosphere, such as water vapor, that affect global climate by influencing the amount of solar heat that reaches Earth.

-----Tracing the path of pollutants-----

Scientists have long known that air over the tropics moves upward between the lower atmosphere and the stratosphere, part of a large-scale pattern known as the Brewer-Dobson circulation. But Randel and his colleagues suspected that the monsoon might also transport air into the stratosphere during the Northern Hemisphere's summer months. This could explain satellite measurements showing anomalous levels of stratospheric ozone, water vapor, and other chemicals over Asia during summer.

To isolate the role of the monsoon on the stratosphere, the researchers focused on a chemical, hydrogen cyanide, that is produced largely as a result of the burning of trees and other vegetation. The parcels of air over the tropical ocean that are lifted to the stratosphere by the Brewer-Dobson circulation contain low amounts of hydrogen cyanide, which breaks up over the ocean. But air over land that gets lifted up by the monsoon contains high levels of the chemical, especially during times of year when Asia has widespread fires, many set to clear land for agriculture.

When they examined satellite measurements, the researchers detected significant amounts of hydrogen cyanide throughout the lower atmosphere and up into the stratosphere over the monsoon region. Furthermore, satellite records from 2004 to 2009 showed a pattern of increases in the chemical's presence in the stratosphere each summer, correlating with the timing of the monsoon. The observations also showed hydrogen cyanide, which can last in the atmosphere for several years before breaking up, moving over the tropics with other pollutants and then circulating globally.

The researchers then used computer modeling to simulate the movement of hydrogen cyanide and pollutants from other sources, including industrial activity. The model indicated that emissions of pollutants over a broad region of Asia, from India to China and Indonesia, were becoming entrained in the monsoon circulation and transported into the lower stratosphere.

"This is a vivid example of pollutants altering our atmosphere in subtle and far-reaching ways," Randel says.

In addition to the NCAR researchers, the study team included scientists from the universities of Waterloo and Toronto in Canada, the University of York in England, and the University of Edinburgh in Scotland.

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Journalists who agree to abide by the embargo may request advance copies of the article by calling the Office of Public Programs at the American Association for the Advancement of Science at 202-326-6440 or sending an e-mail to scipak@aaas.org.

Rachael Drummond | Newswise Science News
Further information:
http://www.ucar.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>