Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pesticides -- easier detection of pollution and impact in rivers

08.09.2009
The long-term effects of pesticides on living organisms in rivers and on water quality can now be assessed more easily. Researchers from the Helmholtz Centre for Environmental Research (UFZ) have developed a tool that can estimate the harmful effect of pesticides, such as those flushed into rivers and streams from agricultural land, within minutes.

"It used to be very difficult to detect which chronic effects occur," explains Dr Matthias Liess, head of the UFZ's System Ecotoxicology Department. In their new approach, the Helmholtz researchers exploit the fact that pesticides cause characteristic changes to the composition of the life community that is affected.

"You just need to find out which living creatures, e.g. insects and crabs, are found at a certain point along the river and in what numbers," Liess explains. The authorities responsible for water management usually have such data available, he adds. Liess and his colleagues have now set up a Web application where this data can be entered and evaluated to show immediately how high the level of pollution in the rivers under investigation actually is. Users download an Excel table from the http://www.systemecology.eu/SPEAR/Start.html website and then enter the numbers of each kind of organism found at each sampling site. Once the table is complete it is fed into the 'SPEAR calculator' and the user enters the region in which the samples were taken. The calculator immediately shows what the water quality in the area in question is like. Regional data is currently available for Germany, France, Finland and Western Siberia, but the system has also been tested in the UK and in Australia. There is no charge for using the service.

Liess believes the authorities can use the calculation results to take suitable steps to reduce pesticide pollution of rivers. "But our tool can do more than just identify problem areas," the Helmholtz scientist stresses. It also indicates where unpolluted stretches of river are compensating for the effect of the pollution. This is extremely important because it can show when conservation methods have been successful. Another advantage of the new tool is that in many cases, complex, expensive chemical analyses will no longer be necessary.

Further information:
Dr. Matthias Liess
Helmholtz Centre for Environmental Research (UFZ)
Phone: +49-341-235-1578
http://www.ufz.de/index.php?en=3714
or
Tilo Arnhold (UFZ press officer)
Phone: +49-341-235-1269
E-mail: presse@ufz.de
Publication:
Beketov M.A., Foit K., Schäfer R.B., Schriever C.A., Sacchi A., Capri E., Biggs J., Wells C., Liess, M. (2009): SPEAR indicates pesticide effects in streams – comparative use of species- and family-level biomonitoring data.
Environmental Pollution 157(6), June 2009, 1841-1848
http://dx.doi.org/10.1016/j.envpol.2009.01.021
The study was supported by the Environment Agency of England and Wales and by the European Union.

Links: http://www.systemecology.eu/SPEAR/Start.html

At the Helmholtz Centre for Environmental Research (UFZ) scientists research the causes and consequences of far-reaching environmental changes. They study water resources, biological diversity, the consequences of climate change and adaptation possibilities, environmental and biotechnologies, bio energy, the behaviour of chemicals in the environment and their effect on health, as well as modelling and social science issues. Their guiding research principle is supporting the sustainable use of natural resources and helping to secure these basic requirements of life over the long term under the influence of global change. The UFZ employs 900 people at its sites in Leipzig, Halle and Magdeburg. It is funded by the German government and by the states of Saxony and Saxony-Anhalt.

The Helmholtz Association helps solve major, pressing challenges facing society, science and the economy with top scientific achievements in six research areas: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Transport and Space. With 28,000 employees in 15 research centres and an annual budget of around EUR 2.4 billion, the Helmholtz Association is Germany's largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

Tilo Arnhold | EurekAlert!
Further information:
http://www.ufz.de
http://www.systemecology.eu/SPEAR/Start.html
http://dx.doi.org/10.1016/j.envpol.2009.01.021

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>